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Abstract:

An experimental study was performed to determine the flow characteristics of a tabbed free

jet. Results were acquired in the near field (nominally 2 tab widths upstream to 2 tab widths

downstream of the exit plane) of a tabbed jet. Upstream pressure results showed static

pressure distributions in both the x- and y-directions along the top surface of the tunnel.

Hot-wire measurements showed rapid expansion of the core fluid into the ambient region.

Two counter rotating regions of streamwise vorticity were shown on each side of the

primary tab.

An enhancement of the tabbed jet concept was proposed and tested. Specifically, two tabs,

half the scale of the primary tab, were added to the primary tab to provide attachment

surfaces for the normally occurring ejection of fluid. The secondary tabs caused a slight

increase in the streamwise vorticity created from the upstream static pressure gradient while

significantly increasing the re-oriented boundary layer vorticity. The combined pumping

effect of the two counter rotating regions of vorticity caused a significant increase in the

transport of the jet core fluid into the surrounding region.
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NOMENCLATURE

English

A"

b:

B:

lw:

n:

N:

N':

p:

Patm:

Q:
R:

S:

S':

U:

Uup:

v"

V:

W:

Coefficient in Collis and Williams relationship. See (3.1).

Base length of the primary tab, 200mm.

Coefficient in Collis and Williams relationship. See (3.1).

Length of active region of hot-wire sensor.

Coefficient in Collis and Williams relationship. See (3.1).

Node. See (5.1) and (5.2).

Half node. See (5.2).

Static pressure.

Atmospheric pressure.

Magnitude of the velocity measured by a hot-wire.

Radius of curvature. See (5.3).

Saddle. See (5.1) and (5.2).

Half saddle. See (5.2).

Velocity in the streamwise (x) direction.

Upstream reference velocity, calculated from the pressure

differential in the tunnel contraction upstream of the tunnel exit.

Velocity in the spanwise (y) direction, lateral velocity.

Velocity magnitude.

Velocity in the vertical (z) direction, transverse velocity.

Greek

IX:

_(surface:

5:

_'nbient:

_core:

5d:

_high speed:

T-

rl:

O':

Angle of secondary tab to the horizontal plane, generic length

measure.

Angle between a slant wire and the probe axis, generic velocity

measure.

Euler characteristic for a surface. See (5.1) and (5.2).

Boundary layer thickness.

Maximum penetration of the shear layer into the ambient region.

Maximum penetration of the shear layer into the core region.

Displacement thickness.

Maximum penetration of high speed fluid into the ambient region.

In-plane flow angle.

Ratio of voltage of a hot-wire at an angle divided by the voltage of

the same wire at T=0. See equation (4.3).

Angle of the secondary tabs with respect to the x-z plane.
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O_x:
Shearlayermomentumthickness.See(5.4).
Streamwisevorticity. Seeequation(4.10).

Symbols

~.

Average value; Velocities are time averaged, Stream wise vorticity

is spatially and temporally averaged. See equation (4.13).

Root mean square value. See equation (4.14).

Non dimensional value. See section 4.7 for definitions.

Definitions

ambient region:

core region:

modified geometry:

primary tab:

secondary tab:

primary geometry:

un-tabbed geometry:

Area in the flow field outside of the projected tunnel walls.

Area in the flow field inside of the projected tunnel walls.

Tab configuration that consists of one primary tab with one

secondary tabs on each side of the primary tab.

The single large (200mm) tab that protrudes into the

core region. Used in both the simple and modified geometries.

The smaller (100mm) tab that protrudes into the ambient

region. Used in pairs.

Tab geometry that consists of a single primary tab.

Tunnel configuration without any tabs. Reference case.
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1. INTRODUCTION

1.1 Previous Work

The restrictions on noise emissions from jet engines have led to the development of

strategies to combat noise in jet flows. There are two sources of jet noise that can be

targeted by the rapid mixing of the heated jet core with the cooler co-axial fan flow. The

first of these two sources is termed "screech". This noise source is related to the

interaction of coherent turbulent structures with standing shock-expansion waves, and the

resulting feedback loop, in supersonic jets. The second noise type is a "broad band" noise

that occurs over a range of low frequencies. This noise is due to the dynamics and

interaction of large and small scale turbulent structures (Ahuja and Brown (1989)).

The development of the High Speed Civil Transport has centered on two passive

mixing strategies previously investigated. The first of these strategies is the use of lobed

nozzles. A study of the effects of lobes in mixing two streams of fluid was conducted by

Koch am Brink (1991) and also reported by Koch am Brink and Foss (1993). This study

demonstrated that the lobe geometry creates strong streamwise vortical motions which

substantially increase the mixing between the two layers. It was shown that the shape of

the lobes creates pressure gradients which re-orient the boundary layer vorticity from

each lobe into the streamwise direction. The areas of streamwise vorticity were found to

have a length scale on the order of the lobe height. The lobed geometry was shown to

have superior mixing characteristics over a simple two stream mixing layer.

An alternate strategy, pursued by the NASA Lewis Research Center, among other

places, has been to use passive mixing tabs in the exit plane of the jet. An obstruction is
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placedin theexit planeof thehighspeedjet core.Theobstructions(i.e."passivemixing

tabs")promoterapidexchangeof thecorefluid with thesurroundingfluid.

Early researchinto thephysicsof tabbedflows wasreportedin Bradburyand

Khadem(1975).In that work theauthorsstudiedtheeffectof changingboundary

conditionson theentrainmentrateof freejets.Theyfoundthatboundarylayerthickness,

turbulencelevelsin theapproachboundarylayerandnozzleconvergencedid nothave

anysignificanteffecton theentrainmentrateof thejet flow. Rathertheydeterminedthat

by placinganobjectperpendicularto thestreamwisedirectioninto thecoreflow they

couldcreatelargescaledistortionsin theflow field. It wasshownin this work thatthe

coresplits into two high speedregionsfor aroundjet with two tabsplaced180degrees

apartin thejet exit plane. A significantincreasein theentrainmentfor thetabbedjet was

indicatedwhencomparedto theuntabbedjet.

BradburyandKhadem(1975)proposedthattwo possiblereasonsfor thedistortionin

thejet flow. Theyreportedthateither: 1) trailingvortexmotionsshedby thetab"stirred"

thefluid or2) thesimpledeflectionof thecoreflow by theobjectcreatedthedistortions.

AhujaandBrown (1989)expandedonmanyof BradburyandKhadem's (1975)

results. They showed that a jet with two opposing tabs had a nondimensional centerline

velocity decay that was much faster than that for the untabbed jet. However, they also

showed that the rate of decay of the nondimensional centerline velocity was much higher

for a tabbed jet with two tabs rather than three or four. Finally the authors showed that

the same effect can be seen in both heated and unheated cores and that the two tab

configuration showed a significant drop in the average core temperature downstream of

the exit.
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Thiswork (AhujaandBrown (1989))wasimportantin thattheauthorsreportedtwo

resultsthatwereimportantto laterstudies.First,thetabplacedinto theflow musthavea

certainlengthdimensionin orderto haveaneffecton theflow field. Second,it was

reportedthattheflow distortionwasnot restrictedto compressibleflows. This second

result was critical in that the analytical as well as experimental analysis of the flow field

could be performed on an incompressible fluid.

In an attempt to infer the physics of a tabbed jet Ahuja and Brown (1989) noted that

the high level of mass entrainment in a round jet is caused by the large scale motions

shed by the jet. It was shown (by the elimination of the screech tones) that for a tabbed

jet these motions were altered. The conjecture was that other large scale motions, created

by the tab, were responsible for the rapid mixing in the tabbed jet. Ahuja and Brown

concluded by stating that the simplicity (i.e. the lack of moving parts) in the tabbed jet

concept made it attractive for use in gas turbine engines.

Much of the current work in the use of tabbed jets has been conducted jointly by

NASA Lewis Research Center (Dr. K. Zaman) and the Ohio State University ( Dr. M.

Reeder and Dr. M. Samimy). A series of studies were performed over several years

which resulted in several conference papers and journal publications. Their results are

summarized here and provide the basis for the present study.

Zaman et. al. (1994) reported that tabs, which were perpendicular to the streamwise

direction and extend into the core flow, produce an area of counter rotating streamwise

vorticity, O_x,on either side of the tab. The sign of this vorticity was of opposite sign from

what one would expect from the re-orientation of the boundary layer vorticity around the

tab. These regions, shown schematically in Figure 1.1, create the large scale distortion in



theflow field shownin previousworks(AhujaandBrown (1989), Bradbury and

Khadem (1975)). In their discussion, the authors stated that fluid from the core region

would be ejected as a result of the streamwise vorticity as shown in Figure 1.1. In

addition ambient fluid was entrained into the core region downstream of the tab as a

result of the vortical motions shown in Figure 1.1. This large scale exchange of fluid

between the core and ambient regions provided the rapid mixing produced by the tabbed

je_ (Zaman et. al. (1994)).

These studies also conf'trrned many of the results of Ahuja and Brown(1989).

Specifically they showed:

1) the results were similar for both supersonic and subsonic flows. This result was

demonstrated through flow visualizations results which clearly showed qualitatively

similar results for both flows (Zaman et. al.(1991)).

2) the tab height (i.e. the height of the tab projected into the exit plane of the jet) must

be on the order of the approach boundary layer thickness or larger in order to have a

significant effect on the flow. A tab which does not exceed this height will not generate

structures larger than the boundary layer and will not effect the global flow field (Zaman

et. al. (1994)).

3) more than four tabs resulted in a decreased effectiveness of the tabs. Specifically,

the lobes of core fluid that were created by the tabs interacted and combined when

four or more tabs were used. For example, a jet with six tabs created a similar

distortion of the flow field as a tabbed jet with three tabs (Zaman et. al. (1992).
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4) atwo tabconfigurationexperiencedmorerapidcenterlinedecaythanathreeor

four tabconfiguration.It wasclearlyshownby theauthorsthatfor atabbedroundjet

with two opposingtabsthecoreflow split into two high speedregions.With four or

moretabstheflow field formedfour lobesof high speedfluid connectedat thecenterof

thejet (Zarnanet. al. (1994)).Notethatthisobservationillustratedthatusingthe

centerlineaveragevelocity decayto determinethe "effectiveness"of atab is incomplete

andcouldbedeceptive.

5) thescreechtonesin thejet werereduced.Additionally, thebroad

bandnoisewasalsoreducein thetabbedjet flow (Zamanet. al. (1992)).

Otherimportantfeaturesof theflow field, in additionto items1-5above,werealso

detailed.A seriesof resultswerereportedin which theorientationof thetabwas

changedandthedifferencesin theflow field wereobserved(Zamanet. al. (1994)).The

authorsshowedthatby orientingthetabssothattheypointedupstreamit waspossibleto

createanejectionof fluid from theregionbehindthetab. (Notethatthis wastheopposite

of theeffect seenwhenthetabwasplacedperpendicularto thestreamwisedirectionas

describedabove.)Thereasonfor thisdifferencewasbelievedto beachangein signof

thestreamwisevorticity introducedinto theflow. When theorientationof thetabwas

changedsothatthetabpoint downstreamin theflow, thedistortionof theflow field (i.e.

theejectionof corefluid) increasedwhencomparedto theperpendicularorientation.In

additionthethrustpenaltydecreasedfor thesamesizetab.Thrustlossfor the

downstreamorientationwasestimatedto benominally 1.5%pertab.This "penalty"was

computedby comparingtheactualthrustto thethrustcalculatedfor auniform flow from

theisentropicrelationship(Zamanet. al. (1994)).
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Steffenet. al. (1996)reportedresultsfrom a computationalstudyin a 3:1 aspect ratio

rectangular jet which mimicked an experimental jet to which the computational results

were compared. These results showed that when two tabs were placed at the midpoint of

the short sides, the jet experienced a switch in the major axis at x/d=3, where d is the

equivalent hydraulic diameter of the rectangular nozzle. For the same jet without tabs,

axis switching was not reported at the farthest measurement location x/d=14, although

the data did indicate that the flow would experience an "axis switch" at a farther

downstream location.

Foss and Zaman (1996) studied the effects of a tab on a two stream mixing layer. In

this experimental study the velocity ratio between the free streams was 2:1 with the tab

pointing into the high speed stream. Using the "Peak-Valley-Counting" technique (Ho

and Zohar (1994)) the authors were able to show that the peak in the dissipation spectra

in the tabbed flow shifted to higher wave numbers. This indicated that the turbulent

cascade increased in length (i.e. the wave number distance between the largest and

smallest scales increased) for the tabbed flow. In addition to having smaller scales when

compared to the untabbed shear layer the small scales in the tabbed shear layer contained

more energy. It was noted that the location in the flow field with the highest peak in the

dissipation spectra did not coincide with the location of the peak in the fluctuating

streamwise velocity values.

1.2 Analytical Considerations of the Flow Field

The effect of placing tabs into the exit plane of a jet is to produce large scale

streamwise vortical motions into the flow field." The orientation of the tabs is responsible
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for determining the sign of the vorticity introduced into the flow. The tab is assumed to

be oriented downstream, see Figure 1.2, in the following analysis.

In past studies (Reeder (1994), Zaman (1993)), analysis of the sources of vorticity in

the flow has concentrated on the streamwise vorticity created by the tabs. This analysis,

while important, serves to analyze only part of the streamwise vorticity seen in the flow

field after the jet exit. There is also a significant region of streamwise vorticity present

due to the re-orientation of the approach boundary layer vorticity.

The vorticity in a two dimensional laminar boundary layer is aligned with the

y-direction using the coordinate system shown in Figure 1.3. Note that all three

components of vorticity in a turbulent boundary layer can exist instantaneously;

however, the time averaged vorticity in a turbulent boundary layer only involves the

y-direction component. This vorticity was introduced into the flow by the creation of a

velocity gradient in the z-direction, i.e. _ u/_ z. To understand possible additional

sources of vorticity in a boundary layer consider the x-component linear momentum

equation:

_u _u 0u _u 1 _P

 +u +VTy+WTz-gx p ax
O2U i _2U.4__ 2u . (1.I)

At a wall u,v,w as well as the derivatives parallel to the wall (i.e. 0 0/_ x and 0 0/_ y)

will be equal to zero if there is no blowing/suction applied. If, in addition, the body

forces are equal to zero and the time derivatives are neglected, (1.1) simplifies to

.O2U..

0- 1 OPl___0+vC__z)lZ=0. (1.2)
pox

Vorticity in the y-direction, ob, is defined as
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u 8 w (1.3)
ab-Sz 8x"

Equation (1.3) can be simplified in a two dimensional boundary layer to

Bu
(1.4)

oh- _z.

Equation (1.4) is then substituted into (1.2) and evaluated at the physical boundary to

yield

1 _ P I_,_. (1.51

Equation (1.5) can be generalized for a flow parallel to a surface by

8 ¢'0bIn_0=+13 P I,!=o (1.6/
_n Ix _s

where n is the direction normal to the surface, s is the direction of the velocity vector

parallel and near to the surface, and b is the direction perpendicular to the same velocity

vector. (Note that ^ ^s x n = _ .) This general result indicates that a static pressure gradient

in the plane of a surface provides a flux of vorticity into the flow with a direction parallel

to the plane of the surface.

Equation (1.51 specifically shows that if there is a pressure gradient in the x-direction

there will be y-component vorticity, coy, added into the flow at z--0. It has been shown in

past studies (Reeder (1994), Zaman (199311 as well as in the present study (section 5.3.1

and 5.5.1) that the presence of a passive mixing tab creates a strong positive pressure

gradient ({3 P/_ x ^0}; for y = 0 and z -- 0) upstream of the jet exit. The adverse

pressure gradient serves as a source of vorticity into the flow. In the analysis of a



boundary layer it is instructive to note that separation occurs when the vorticity becomes

zero at the wall.

The vorticity upstream of the tab is re-oriented and stretched by the velocity gradients

in the flow. The x-direction vorticity transport equation is given by (Whitham (1963),

equation (17)):

V 3+ vV2 (1.7)
Dt

Equation (I .7) can be decomposed into the x-direction transport equation as

Do_x 0u OU 3U _ 320_x t_ 3 2 fl._Dt-°')X_x'x+°Y_y+°_z +v( -) 32y --_-z) (1.8)

The first term of (1.9) on the right hand side is the stretching term, the second and third

terms are re-orientation terms, and the fourth term is the viscous diffusion term. It is

possible to re-orient the boundary layer vorticity, COy,into streamwise vorticity in the

presence of a velocity gradient 3 u/0 y via (1.8). The -ctb from the boundary layer will

become +COxfor y<0 for the tabbed jet. Note that for a tabbed jet 3 u/3 y < 0 for y<0.

The vorticity from the re-oriented boundary layer is of opposite sign to what was found

to dominate the tabbed jet flow (Zaman (1993)). It was this observation which led to the

further analysis (Reeder (1994), Zaman (1993)) of the sources of the negative sense

streamwise vorticity seen in the flow field. (Note, it will be shown in this study that the

re-oriented boundary layer vorticity plays a significant role in the large scale transport of

fluid from the core region to the ambient region in the near region (x < 2b ) of the flow

field.)
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It is possible to show, using (1.6), that a pressure gradient in the y-direction will also

serve as a source of streamwise vorticity in the flow by

_¢._ lo _
v _ Iw0 - Plz,_0. (1.9)

pOy

Equation (1.9) is derived from the general expression (1.6) where n is the z-direction, b is

the x-direction and s is the y-direction. The tabs, in addition to creating a pressure

gradient in the x-direction, also create a pressure gradient in the y-direction (Zaman

et. al. (1993), section 5.3.1 and 5.5.1). Since i3 P!/)y was greater than zero for y<0 this

pressure gradient will act as a source of negative o_ in the flow field.

Zaman (1993) first discussed the two regions where pressure gradients were found

that would provide a flux of negative sense streamwise vorticity into the flow I. These

regions (labeled 1 and 2 on Figure 1.2) were found directly upstream of the jet exit along

the jet wall and on the face of the tab itself. The upstream pressure distribution, dubbed

the "pressure hill", was found to be the dominant source of vorticity for the flow field.

This was determined by displacing the tab downstream from the jet exit (creating a gap

between the tab and the jet exit) which reduced the pressure distribution upstream of the

tab. This was shown to greatly reduce the overall effect of the tabbed jet (Zaman et. al.

(1994)).

The observation that the effects of tabs are independent of compressibility (Ahuja and

Brown (1989) and Zaman et. al. (1991)) is important in the error analysis sources of

Zaman credits Dr. J. Foss of Michigan State University with proposing the idea of the

two possible regions of pressure gradients which provide a flux of streamwise vorticity
into the flow.
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streamwise vorticity in that there are other sources of vorticity in a compressible flow

which have been neglected in the above analysis.

1.3 Present Study

The present study was performed to provide further details about the flow field of the

tabbed jet. The experimental apparatus, with exit dimensions of 610 mmx 610 mm and a

tab length of 200 mm was of a very large scale when compared to those used in the

works of K. Zaman, M. Reeder, and M. Samimy. This permitted measurements to be

readily made very close to the exit plane of the jet; the present data are the first to be

reported in this near region. These measurements included cross-vane vorticity

visualizations as close as x/b=0.1. The scale of the experimental apparatus also reduced

the spatial resolution problems of x-array hot-wire probes that were experienced by

Zaman et.al. (1994).

Four experimental procedures were used in this work to interrogate the flow field.

First, static pressure measurements were made upstream of the tunnel exit. This gave

insight into the vorticity sources of the flow field and how geometry changes could be

utilized to enhance the tab's effect. Second, a cross-vane vorticity probe was used to

determine the nominal borders of the streamwise vorticity in the very near field of the

tabbed jet, i.e. x/b=0.1 to 0.4. Third, a single sensor probe was used to determine the

streamwise velocity field for the untabbed jet at x/b--0.7,1.2, and 2.0, as well as for the

simple and modified jets at x/b=0.7. Finally x-array hot-wire probes were used to provide

u,v, and w measurements at x/b= 1.2 and 2.0 for the primary tab jet and modified tab jet.

Note that at x/b--0.7 the flow angle fluctuations were found to be too large (i.e. greater
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than+_36degrees)to allow theuseof x-array hot-wire probes. These data were then

processed to provide the spatially averaged streamwise vorticity, cox, at those locations.

Three geometries were investigated, see Figure 1.4. The untabbed jet, Figure 1.4a,

provided the reference case for the basic flow field. The primary tab geometry, Figure

1.4b, has one primary tab. This geometry (an equilateral triangle oriented 45 degrees

downstream) served as a connection to the past work of K. Zaman, M. Reeder and M.

Samimy. Note that the percentage of the exit area to the projected tab in the y-z plane

was nominally 3 times greater in this study. A primary goal of this study was to provide a

basis for enhancing effects of the tabs in jet flows. The modified tab geometry was

created by the addition of two secondary tabs, one on each side of the primary tab, see

Figure 1.4c. A rationale for the changes in the flow field for the modified tab geometry

when compared to the primary tab geometry will be given and further insights into the

physics of tabs will be discussed.
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2. EXPERIMENTAL APPARATUS

2.1 Flow System

An Engineering Laboratory Design closed loop wind tunnel, shown in Figure 2.1,

was used as the flow system for this study. The unmodified tunnel has a clear plastic test

section of 61cm x 61cm x 244cm (2'x2'x8'). The flow is driven by a JOY 50 hp AC

motor with a constant speed of 1770 rpm. Adjustments to the flow speed are made via a

manual controller which varies the angle of attack on the fan blades. Tunnel cooling is

accomplished using a fin/tube heat exchanger with building water as the cooling medium.

The plenum-test section contraction ratio is 6.25. Static taps upstream and downstream of

the contraction provided the reference velocity Uup. The calibration curve for this tunnel

was found using a single sensor hot-wire probe located at the exit of the tunnel extension,

see Figure 2.2. The calibration curve is shown in Figure 2.3.

The tunnel was modified by removing the test section creating a Goettingen style

wind tunnel as shown in Figure 2.2. A 24 cm long tunnel extension, shown in Figure 2.4,

was placed at the tunnel "exit". Two rows of static pressure taps in the x-direction were

placed on the top surface of the extension. The top surface was machined to allow the

position of the top surface (and hence the static pressure taps) to be variable in the

y-direction. This permitted P(x,y)-Patm to be measured upstream of the tab. The exit plane

was machined to allow the attachment of the tabs. The entrance to the tunnel was fitted

with half round flow conditioners. Cheese cloth with a wire mesh backing was placed

over the inlet to prevent airborne particles from entering the modified tunnel.

15
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A four degree of freedom traverse system, shown in Figure 2.5, was in place in the

wind tunnel test section. The system allows for x,y,z and 0 (about the z-axis). The probe

support, seated on linear bearing blocks, was driven by high precision lead screws. An

IBM/XT clone was used in conjunction with an OMNITECH ROBOTICS MC-3000 and

MC-1000 controller board to provide the motion control. Five YASKAW 100 watt DC

servo motors with optical encoders were used to drive the lead screws. The servo motors

have a resolution of 36000 counts per revolution. The accuracy of the traverse in the

x,y,z directions was found to be 0.1 mm. Probes were located by sighting the probe

location with respect to the center top surface of the tunnel extension. Extensions for the

probe holder were machined to allow measurements to be made above the top of the

tunnel.

2.2 Experimental Configuration Definitions

Figure 1.4 defines the geometries used in this study. The "untabbed" flow was used

as the reference flow field. This flow field can be characterized as a square free jet. The

"primary tab geometry" was created by the addition of one "primary" tab to the top

surface of the untabbed jet. The primary tab was placed on the top surface of the tunnel

and was oriented 45 degrees downstream Of the exit plane as shown. The primary tab

(machined from 3.14mm (1/8") thick stock) was an equilateral triangle with a base

length, b, of 200 mm. The modified tab geometry consisted of the primary tab with two

secondary tabs placed symmetrically about the center line of the primary tab. The

secondary tabs had a base length of 100mm or 0.5b; they were also machined from 3.14

mm (1/8") thick stock. The location of the secondary tabs as well as the angle at which
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they werepositionedwasvariable.For bothtabbedgeometriesthepercentblockageof

thejet exit wascalculatedto be 6.6%andwasdeterminedfrom theprojectedareaof the

primarytab in they-z planein thejet core.

7.3 Data Acquisition and Processing Systems

Data acquisition was performed using an Analogic Fast-16 A/D card with an IBM

486-66 PC clone. The A/D card had a resolution of 16 bits with a range of+10 volts.

This allows an A/D resolution of 0.31 millivolts. The inherent noise of the A/D board

was found to be +1 bit. The maximum sample rate of the system was 1 MHz. An eight

channel sample and hold card was used in conjunction with the A/D card to provide eight

channels of true simultaneous sampling.

The data were processed on the indicated PC as well as on a DEC ALPHA AXP- 150

computer system.

2.4 Pressure Transducers

Two pressure transducers were used to take the reference and static pressure

measurements for this study. A 1 Torr MKS Baratron pressure transducer was used to

provide the reference pressures for the normalization of all hot-wire data as well as for

calibrating the hot-wire sensors. Additionally the Baratron was used to measure the static

pressure, P(x,y)-Patm, upstream of the tunnel exit. A Validyne DP 15-20 pressure

transducer was used to provide the reference pressure during the static pressure surveys.
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2.5Hot-Wire Anemometers Anemometers

Hot-wire data were taken using several constant temperature anemometers. The

single sensor surveys, as well as some of the x-array probe surveys, were accomplished

using DISA 55M10 anemometers. The noise on these anemometers was found to be on

the order of +__2.0millivolts peak to peak. The typical frequency response was found to be

48 KHz at 10.5 m/s flow speed. The remainder of the data were taken using TSI 1750

anemometers. The noise level on these anemometers was found to be +1.5 millivolts with

a frequency response of 16 KHz at 10.5 m/s.

All hot-wire probes used in this study were fabricated (in-house) at the Michigan

State University Turbulent Shear Flows Laboratory. Individual hot-wire sensors were

constructed from 5_tm diameter tungsten wire. A schematic of a typical single sensor

probe is found in Figure 2.6. The wire spanned a length of 3mm with a lmm active

sensing region centered between two lmm regions of nominally 50l.tm diameter copper

plated tungsten. The active region of the sensor had a length to diameter ratio of 200.

Hot-wire sensors were operated with an overheat value of 1.7. Nominal cold resistances

of the wires were found to range from 3.5 to 4.5 ohms.

The sensors of the x-array hot-wire probes were the same as those for the single

sensor probes described above. Two x-arrays were used simultaneously to provide u,v

and u,w measurements at each location. The u values from the two arrays were averaged

to provide the measurement of u.

All hot wire data were temperature compensated to reduce errors caused by a change

in flow temperatures between the calibration and the measurements. Temperature

measurements were conducted using a thermistor with a sensitivity of 2.03 K/Kohm at
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293 K. At 293K the thermistor had an accuracy of_+0.2K and a frequency response of

10Hz. All temperature changes were assumed to be long term (on the order of hours) and

therefore the response time of the thermistor was considered sufficient.
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Figure 2.6: Schematic of single sensor hot-wire probe.



3. DATA PROCESSING METHODS AND CONSIDERATIONS

3.1 Introduction

The information presented in sections 3.2-3.4 describes the protocols for the use and

calibration of the hot-wire probes in this study. The first two sections deal with the

processing algorithms and calibration methods for the probes. The rationale for the use of

each probe in different measurement locations in this study are presented in section 3.4.

Sections 3.5-3.7 deal with the cross-vane vorticity probe and further data reduction

methods for all data in this study.

3.2 Single Sensor Calibration and Processing Algorithms

Data from the single sensor probes were processed using the modified Collis and

Williams (1959) relationship:

E2=A+BQ n (3.1)

The measured hot-wire voltages were converted into velocities by solving (3.1) for the

flow velocity Q.

A probe was calibrated by exposing the sensor to a steady flow and sampling the

resulting anemometer output voltage and a reference pressure voltage. A MKS Baratron

pressure transducer was used to measure the pressure differential in the calibration

facility which provided the measured reference speed Qm. Six flow speeds, ranging from

1.5 rn/s to 13 m/s, were used in each calibration. Note, 1.5rn/s represented the minimum

25
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measurablespeedin thecalibrationunit,while 13rrdsrepresentedavelocitythat

exceededthehighestexpectedvelocityin theflow field.

Thecalibrationdatawerethentransformedinto E2hwandQnmwherethesubscripts

"hw" and "m" represent"hot-wire" and"measured"respectively.A leastsquareslinear fit

wasperformedon thetransformeddatato calculatetheconstantsA andB used in (3.1).

The standarddeviationof thecalibrationdatawascalculatedby

N

1
sd = ( N_ ( Q _culat_ -- Qm )2)1/2 (3.2)

I

where Qealeulated was the velocity calculated from the measured anemometer voltage using

the fit A and B for the given n and (3.1). The coefficient n was varied from 0.2 to 0.7 to

determine the calibration coefficients that minimized the standard deviation. Figure 3.1

shows the affects of changing n for a given set of calibration data. The calibration data

became most linear as the "best" n was approached. Typical "best" values of n ranged

from 0.4 to 0.5.

3.3 X-Array Calibration and Processing Algorithms

An x-array was used to provide two components of velocity in the "plane" of the

probe. Note that the "plane" of the probe refers to the plane parallel to the two wires of

the probe, see Figure 3.2. The processing of an x-array hot-wire probe required the two

voltages from the wires in the probe to be known at the same instant. These two voltages

were processed simultaneously to provide measurements of the flow speed, Q(t), and

angle, _(t) in the plane of the probe.
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The simplestx-arrayprocessingalgorithm,termedthe"cosinelaw", wasbasedon the

conceptof theeffectivecoolingvelocity(Bradshaw(1975)).Thisrelationshipassumed

thatahot-wiresensorwascooledonlyby thevelocity componentperpendicularto the

wire, Qeff.The effectivecoolingvelocity,Q_ff,for a hot-wirewasdeterminedby the

relation

Qen=Qcos(13-_'). (3.3)

Theangle_,,termedthe"flow angle",wasdefinedastheanglebetweentheprobeaxis

andthein-planevelocity vectorasshownin Figure3.2.The angle13wastheangle

describedby aline drawnperpendicularto thewire andprobeaxis.Theeffective13was

determinedusingthecalibrationdataasdescribedin AppendixA.

Expansionof (3.3)usingatwo angleformulayielded

Qcn=Q[cos(13)cosO,)+sin(13)sin0,)]. (3.4)

Substitutingthevalues

u=Qcos(7) (3.5)

v=Qsin(),) (3.6)

into (3.4)yielded

Q_ef=ucos(13)+vsin(13). (3.7)

Equation(3.7)yieldedoneequationwith twounknowns,u andv, for eachsensor.The

two sensorsin thex-arraywereusedsimultaneouslyto solvefor u andv by

Q_÷= ucos(13+) + vsin( 13÷) (3.8)

and

Q__= ucos(13_) + vsin( 13-). (3.9)
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ThetermsQcff÷andQcn-in (3.8)and(3.9)weredefined from the calibration data and

measured hot-wire voltage as

E_- A+ (y=O) ,](_) (3.10)
[B+ (T = 0)/cos( 13+)

and

=[ E _- A-- (T= O)
Qar- "B_('T ---0)-7-c-_s( __ )n_] (n-C_=_)" (3.11)

Where - and + indicate the voltages and coefficients associated with the -[3 and + 13

sensors. Note that in (3.10) and (3.11) A, B and n values were only required for y=0.

Calibration of an x-array for use with the cosine law could therefore be accomplished

using the same protocol as described for a single wire if 13were known. The in-plane

flow velocity and flow angle were defined from u and v as

q=(u2+v2) v2 (3.12)

and

y=tanq (v/u). (3.13)

This routine has been shown to be accurate for flow angles up to _ 12 degrees (Foss et.

a1.(1986)).

Historically, the "modified" cosine law was introduced as an attempt to increase the

effective range of an x-array (Champagne, .... and Hinze (1959, 1975). In the cosine law

it was assumed that the wire responded only to the flow which was perpendicular to the

wire. This assumption became less valid as the flow angle was increased for a finite

length wire. The modified cosine law accounted for this affect by adding a term to the

effective velocity as:
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Qef-f=Q(cos2([3-Y)+k2sin2(B-Y)). (3.14)

Note that the k2sin2(l_-y) term was included to account for the transverse cooling velocity

and that the term k 2 could be determined using calibration data for the probe. This routine

has been used extensively, however it also has some disadvantages. Specifically, the

processing algorithm assumed A, B and n values were constant for all flow angles. This

assumption has been to shown to be incompatible with experimental calibration data

(Fosset.al. (1986)). Note this same limitation was also present for the cosine law

algorithm. In addition, the values for k 2 determined from the calibration data have often

been determined to be negative from the calibration data.

An alternate processing algorithm, described in Foss et. a1.(1995), was used in this

work. In this algorithm it was assumed that the wire which was more perpendicular to the

flow direction was more responsive to the flow speed; therefore, that wire was designated

the "speed wire". Conversely, the wire which was more tangent to the flow angle was

more responsive to angle variations, and this wire was designated as the "angle wire".

Wire 1 was the speed wire and wire 2 was the angle wire for the velocity vector shown in

Figure 3.2.

This processing algorithm required extended calibration data. Specifically, the angle

of the probe with respect to the flow was varied at a given speed. This provided speed

and angle calibration data (i.e. E(Q,y)). These data were fit at each calibration angle to

the modified Collis and Williams form by

E2(Q,y)=A(y)+B (_,)Q n(_. (3.15)

The best fit n was determined for the calibration data at each angle as described in section
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3.2. A typical setof calibrationdata,plottedasE versusQ, is shownin Figure3.3.These

dataclearly illustratetheproberesponsedependenceon bothangleandspeed.

A relationshipfor thewire voltageversusflow anglefor aconstantspeedwas

developedfor thisprocessingalgorithm.Namelythefunctionrl(7) at afixed Qwas

definedas

E(Q,),)
1"1= -1. (3.16)

E(Q,0)

Using the curves described by (3.15) _('t) was defined for any arbitrary speed at all

calibration angles. In this work, 51 curves of flow angle, T, versus 11were defined for

even speed increments from 0.25 m/s to the highest calibration speed, nominally 13 m/s.

This allowed for the rational interpolation of the calibration data between the calibration

speeds. Figure 3.4 shows a typical 7 versus rl curve for an arbitrary speed. A fifth order

polynomial was used to describe the curve.

The enhanced sensitivity of the "angle wire" to the pitch angle ('t), in contrast to the

insensitivity of the "speed wire" is clearly illustrated in Figure 3.4. Specifically, for flow

angles greater than zero the calibration data were spaced over a range of rl from -0.09 to

0. For negative flow angles these data ranged from 11-0 to 0.045. This clearly illustrated

that there was a greater resolution of flow angle for a positive angles with this wire.

Conversely, a change in flow angle did not create as great a change in the hot-wire

voltage indicating it was more sensitive to the flow speed for negative flow angles.

The following processing algorithm was developed to use the speed wire/angle wire

concept described above. The speed wire and angle wire were determined using an initial

estimate of the flow angle, )'o_d.In this work the initial estimate of the flow angle for the
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speedwire/anglewire algorithmwasprovidedby first usingthecosinelawto processthe

data pairs. A new estimate for the speed, Qnew, was made using the speed wire with the

A,B, and n values for the calibration angle closest to Told. The variable rl was determined

for the angle wire using its voltage, E, and (3.16). Two estimates for the new flow angle

were made using the two 7 versus r I curves closest to the new flow speed Qnew. The new

flow angle, )'new, Was found by linear interpolation between the two angles based on the

flow speed.

This processing algorithm was iterative. At the end the algorithm the new estimates

for the flow speed and angle became Qold and )'old for the next iteration pass. In this work

the solution was iterated 5 times to achieve the final values for Q and )'. The speed wire/

angle wire processing algorithm has been shown to increase the effective range of an

x-array to +36 degrees for sufficiently high flow speeds (Foss et. al. (1995)).

Calibration of the x-array probe was accomplished using six speeds, ranging from

1.Sm/s to 13rrds, and thirteen angles, ranging from -36 to +36 degrees. Note that the

calibration angle range was larger than the effective angle range to permit full resolution

of the angles within the effective range.

It is important to note that an x-array probe will also respond to a velocity component

which is perpendicular to the measurement plane. The effect of this component, typically

referred to as the "bi-normal" component, is present in the x-array data contained within

this work.
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3.4 Determination of the Use of the Single Sensor and X-Array Probes

The decision to use a particular type of hot-wire probe was based upon the flow

conditions, the data to be acquired, and the limitations of the probe.

In this study, the single sensor hot-wire probe was used to measure the streamwise

velocity component for the untabbed geometry at x/b--0.7,1.2 and 2.0. Note that a single

sensor probe was assumed to respond to two components of velocity which were

perpendicular to the sensor wire. Specifically in this work, the sensor will respond to a

streamwise velocity component, u, and to the transverse velocity component, w, because

the sensor was parallel to the z-axis. The magnitude of the velocity measured at an

instant by this probe will be

Q(t)=(u (t) 2+w (t) 2)1/2. (3.21)

The average value as well as the fluctuating value will therefore be a result of the two

velocity components. If either _ or _ were equal to zero than the average value of (3.21),

_, will be identically _ or _ respectively. The untabbed jet flow field had nominally one

mean velocity component, _, which allowed accurate average streamwise velocity

measurements to be made with the single sensor probe. The fluctuating values, which

showed w' < u', allowed a reliable estimation of _ to be made using the single sensor

probe.

The flow pitch angle fluctuations were too large (i.e. greater than +_30 degrees) at

x/b=0.7 to allow the use of x-arrays for the primary tab and modified tab geometries.

Single sensor measurements were made at this location for these geometries so that

qualities of the flow field could be inferred. This inferential process was limited by the

non-zero _ in both tabbed jet geometries. Specifically, these data will contain the
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combinedeffectsof u(t) andw(t) in boththemeanandfluctuatingvaluesasindicatedby

(3.21).

Theflow pitchangleswerefoundto belesssevereat x/b=1.2and2.0for theprimary

tabandmodifiedtabgeometries;thispermittedtheuseof x-arrayprobesin these

locations.At theselocationsit waspossibleto measureu(t), v(t), andw(t). Note thatin

orderto resolveu,v,andw, two x-arrays,with theirmeasurementplaneshorizontaland

vertical,wereusedin theflow field simultaneously.The twox-arrayswereseparatedby

adistanceof nominally2.12ramfrom thecenterof thesensingarrays.Theaverage

streamwisevelocityvalue,fi, wascomputedby averagingthestreamwisevelocity data

from bothx-arrays.Thex-arrayhot-wireprobeallowedthecomputationof theaverage

velocity values,correlations,cross-correlations,two normalstresses,andoneshear

stress,to bemadefor eachx-array. Notethatthesensorson thex-arrayhot-wireprobe

will respondto thevelocitycomponentperpendicularto theplaneof thex-may (the

"bi-normal"velocity).In thisstudynoattemptwasmadeto correctfor this velocity

component.

Figure3.5wasincludedto provideacomparisonof thestreamwisevelocity

measurementsof thetwo probes.Notethatsinglesensorhot-wireprobewasheldsuch

thatthesensorwasparallelto thez-axisfor all datain this workandthereforeresponded

to theu(t) andw(t) velocitycomponents.Figure3.5,takenfrom thedataof themodified

geometryatx/b=1.2,showedthatthesinglesensorandx-arrayhot-wireprobemeasure

thesameaveragestreamwisevelocityalongthesidewall of thetunnelwherethe

transversevelocitywassmall,i.e.W< < ft. However,in theregionabovethetunnelexit

(i.e. +z) thesinglesensorhot-wireprobeoverestimatedthemagnitudeof the streamwise
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velocity.This wasexpectedsincethemagnitudeof _ wassignificantin thisregion(i.e.

--O.15u-)andtherefore_ < 1_.

3.5 Streamwise Vortidty Calculations

The spatially averaged streamwise vorticity, tax, was defined as:

0_ 0V
(3.22)

°_-Oy Oz"

Thus, the spatially averaged streamwise vorticity was calculated from the appropriate

partial derivatives of the _ and _ velocity fields which were computed using a second

order finite difference method. The interior points were central differenced using (3.28)

of Anderson (1984) by:

__._) ai+l -- ai-!i- 2Ah
(3.23)

while boundary points were either forward or backward differenced depending on the

boundary using (3-29) of Anderson (1984) by:

0 a -3ai + 4ai+1 - ai+2 (3.24)
_"_) i - 2Ah

and (3-30) of Anderson (1984) by:

___) 3ai - 4ai-1 + ai-2 (3.25)i= 2Ah

Note, h was the spatial distance between data grid points. This method was found to give

comparable results to fitting the data and taking a derivative of the fit curve.
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3.6Cross-VaneVorticity Probe

Thevery nearfield of the jet was defined as the area from the physical exit of the

tunnel, x/b--0, to the downstream plane which was described by the tip of the primary

tab, see Figure 3.6. The tip was nominally located at x--0.61b. In this region the angle

range of the flow pitch angles was greater than +_30 degrees. A cross-vane vorticity probe

was used in this region to provide qualitative information about the streamwise vorticity.

Figure 3.7 is a schematic of the cross vane vorticity probe. This probe was placed into the

flow such that the probe axis was in the streamwise direction. The blades on the probe

rotated in the presence of nonzero streamwise vorticity, COx,(with a sufficient magnitude

to overcome the friction of the device) as described by (3.22). In this study the probe was

used in a qualitative manor. Specifically, it was noted which direction the probe spun

and if the probe spun "fast" or "slow" at each measurement location. The data presented

in section 5.3.13 represented the nominal boundaries of the regions of streamwise

vorticity from x/b=0.1 to 0.4. The friction in the probe did not allow observations to be

made for streamwise distances greater than about x/b=0.4.

3.7 Statistical Calculations

The data presented within this study were a result of single point measurements. Each

time series was processed to provide average and fluctuating values at one measurement

location. The mean and mean square values were defined for a time series of data as

N

_ 1 (3.26)
g=N_gi

i=l

and
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N

= __l_(g i _ g--)2
0

Finally the rms fluctuating value was defined as

(3.27)

(3.28)

Data for both the single sensor and x-array hot-wire measurements were acquired at a

variety of sampling rates for 30 seconds. The sample time corresponded to 1575 tab base

lengths units passing the tunnel exit with a nominal approach velocity of 10.5 m/s.

Pressure data were taken at a sample frequency of 200Hz for 30 seconds.

These data were primarily represented in contour form to allow global features of the

flow field to be represented. Three plots of data acquisition grids are presented in Figure

3.8 to provide a frame of reference as to the data point spacing used to form the contour

plots. The first of these plots, Figure 3.8a, shows the data acquisition grid for the

upstream pressure surveys. Data were acquired with increments of Ax=Ay=0. lb. Figure

3.8b shows the grid spacing for the hot-wire surveys conducted at x/b=0.7. These data

were acquired with Ay=Az=0.05b. Finally, Figure 3.8c represents the data acquisition

spacing for hot-wire surveys conducted at x/b=l.2 and 2.0. These surveys were

conducted with a spacing of Ay=Az=0.075b.

3.8 Normalization of Data

All quantitative data are presented in non-dimensional form. The lengths were

non-dimensionalized by the base length of the tab, b, as

K*=K/b (3.29)
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where K represents any length measure in the flow field. Average and fluctuating

velocity values were normalized with the approach velocity, Uuo, by

• *=_/Uup (3.30)

where • is a velocity statistic in the flow field. The streamwise vorticity values were

normalized with the approach velocity and the base length of the tab by, b/Uup as

o_"x =_ (b/U_p). (3.31)

Finally the gage pressure values were made non-dimensional by the dynamic head of the

approach flow as

p*=p/o.5pU2up. (3.32)
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4. UNCERTAINTY CONSIDERATIONS

4.1 Pressure Measurements

Data taken with the 1 Torr MKS Baratron had an associated uncertainty of _+0.08% of

the measured value( MKS Instruments (1994)). The _+0.08% level of uncertainty

corresponded to an uncertainty of 0.04cm/s (0.004% of Uup) in the measurement of the

approach velocity Uup. Note, this level of uncertainty was based on a nominal 4.8 volt

measurement for an approach velocity of 10.5 m/s. For the measurement of the static

pressure field the uncertainty for the Baratron can be taken to be _+0.08% directly. The

reference pressures for the static pressure surveys were taken using a Validyne DP15TL

pressure transducer. This device had an uncertainty of _+0.5% of the measured value

(Validyne Engineering (1978)) which corresponds to a velocity uncertainty of 0.2cm/s

(0.02% of Uup).

The static pressure measurements on the top surface of the tunnel extension without

tabs present provide details about how well the static taps perform in a flow field.

Specifically, any physical defects in the taps will provide a greater error in the pressure

measurements than will the errors associated with the pressure readings. The pressure

data upstream of the tunnel exit for the untabbed geometry (shown in Figure 5.2 ) show

static pressures bounded by the magnitudes Cp=0 _+0.02. The farther upstream data show

a back pressure which is made rational given the boundary layer growth in the tunnel

extension. The pressure measurements also show a value of Cp = -0.02 along the wall.

Note that the same pressure tap is used to measure all of the pressures for x=constant

locations, therefore the pressure measurements'in this region are due to imperfections in
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the apparatus (i.e. the side wall/top wall interface) and not these local tap. The pressure

measurements at the exit of the tunnel should be equal to zero. The nonzero

measurements in this region indicate the uncertainty in the pressure to be _+0.006 as a

conservative estimation of the uncertainty due to the tap imperfections. Figure 4.1 shows

a typical pressure distribution for a fixed x location with uncertainty bars.

4.2 Hot-Wire Measurements

All hot-wire probes were pre and post calibrated to ensure that the wires did not

experience significant drift during usage. Drift values were limited to a maximum of 0.05

m/s for a single sensor probe and 0.15 m/s for the x-array probes. These estimates of drift

were calculated by combining the pre and post calibration data to provide calibration

constants from the combined data and checking the standard deviations of the combined

calibration data.

Single sensor hot-wire calibrations show a typical standard deviation of 0.03 mJs

between the measured velocity and the analytical form E2=A+BQ n , as described in

section 3.1. Note that at 10.5 m/s, nominally the approach velocity Uup, this level of

deviation represents 0.3% uncertainty in the velocity measurements.

The x-array calibrations show a typical deviation of 0.08 m/s, i.e. 0.8% of U,_p, and an

angle variation of 0.1 degree except at the lowest calibration speed (nominally 1.5 m/s)

and at the largest angles (+ 36 degrees). In these extreme conditions the velocity was

recovered to nominally 0.2 rn/s and the angle to within 3 degrees. This estimation of the

uncertainty in the x-array data was made by taking the calibration data, i.e. voltage at an
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knownangleandspeed,andusingtheprocessingroutineto calculatethespeedand

angle.Theprocesseddataarethencomparedto themeasureddata.

Figure4.2ashowsatypical averagevelocitytraversewith errorbarsincludedfor

illustration.Notetheerrorbarsincludedin this figure werederivedfrom theuncertainty

in thecalibrationdata.Figure4.2bshowsthe_! Uupsurveyfor thesametraverse.The

errorbarsincludedwithFigure4.2bweredeterminedby processingthesamedataset

with thepreandpostcalibrationcoefficientsseparately.Thedifferencebetweenthe

measurementswasfoundto beA ( Vt/Uup ) = 0.003.

Figures 4.3 and 4.4 show the convergence of the mean and fluctuating statistical

properties as a function of sample size in the plume region of the flow (i.e. at y=-b and

z--0.4b) for two data sets with _ = 0.6U_p and _ = 0.3U_p respectively. Note that the total

number of samples n=60,000 was fixed by the sample rate (200Hz) and the total sample

time (30 seconds). The data for _ = 0.6U,p, Figure 4.3a, suggest that the "infinite sample

size" mean value can be estimated to be _/Uuo = 0.62 + 0.005 by the convergence

pattern. Figure 4.4a also shows _ as a function of the number of samples for _ -- 0.3U_p.

The convergence of the data at this location is less pronounced. The mean value of

0.32, obtained from 60,000 samples clearly does not represent a "converged statistic".

From the variation of the "mean values" with increasing sample size, it is also difficult to

estimate the true mean value at this point in the flow field: x=2.0b, y=-1.05b, z=0.825. It

is instructive that this location is near the peak of the out-flow "plume" to be described

below. In contrast, data taken from the outer edge of the jet flow (away from the tab) at

x=2.0b, y=- 1.8b and z=- 1.05b and also for fi = 0.3U,p exhibit convergence for as few as
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10,000samples;seeFigure4.5a.This clearlyillustratesthatdifferentintegralscales,and

hencestrongdifferencein thenumberof independentsamplesfor the30secondperiod,

arepresentin thedistortedandundistortedshearlayer.

The convergenceof thestandarddeviationvalueshasalsobeenassessed;thesedata

areshownin Figures4.3b,4.4band4.5b.It isapparentthatfewersamples(30000,

40000,and 10000respectively)arerequiredfor theevaluationof thisstatisticalmeasure.

Thedatafrom thex-arrayswasusedto providecalculationsof theshearstressesin

theflow field. Figure4.5showsthecollapseof h-'_/U2p andh-"-W/U2pasafunctionof

thenumberof samples.(Notethesedatawerecalculatedfromthesamemeasurements

usedin Figure4.3.)Theseplotsshowthedatatendingto convergence,althoughthese

calculationsappearto beoscillating.An estimationof theuncertaintyin thesedatawas

determinedto be_+0.002for bothquantities.

In this studytherearelargeregionsof low velocity withmagnitudesthat arenot

within thecalibrationrange.Specifically,theminimumpossiblecalibrationspeedgiven

theexperimentalfacilitieswasnominally 1.5m/s.Measurementsof velocitiessmaller

thanthoseof thethecalibrationdatarequireextrapolationof the calibration data and

exhibit a larger uncertainty than do measurements that fall within the calibration velocity

range. To minimize the effect of this uncertainty on the results the velocity data are

presented in contour form with a minimum streamwise velocity contour of 0.15*U,p.

This represents a dimensional value of nominally 1.6 m/s which was within the

calibration velocity range.
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5. RESULTS AND DISCUSSION

5.1 Introduction

The results of this study are divided into two parts. The first part, section 5.2, details

the untabbed jet results. These data were used to provide a reference case for the tabbed

jet results. The results for the tabbed jets are presented and discussed in sections 5.3-5.6.

The initial results (static pressure, streamwise velocity and surface streak patterns) for the

primary tab geometry are first presented (section 5.3). These data provided the details

which served as a basis for the modification of the tabbed jet. This section is followed by

a discussion on the orientation of the secondary tabs for the modified tab geometry

(section 5.4). The initial results for the modified geometry are then presented (section

5.5). Finally the remaining results for tabbed jet geometries are compared and discussed

(section 5.6).

5.2 Untabbed Jet Results

5.2.1 Exit Boundary Layer Survey

A velocity survey using a single sensor hot-wire probe was conducted at the exit of

the tunnel extension to provide detailed information about the approach boundary layer

for the untabbed jet. The results, shown in Figure 5.1, indicated that the approach

boundary layer had: a boundary layer thickness, 8, of 3rnm (0.015b), a displacement

thickness, 8d, of 1.27mm (0.0064b) and a momentum thickness, 0, of 0.52mm (0.0026b).

The approach boundary layer remained laminar up to the exit as indicated by the shape

factor H, which was found to be 2.47. (H for the Blasius solution is 2.59.) The peak
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fluctuatingvelocity valuewas Umax= 0.014Uupaty/0 = 3. Thefluctuatingvalueswere

seento decreaseto nominally0.006Uupastheobservationpoint approachedthecore

flow. This turbulencelevel indicatedthatthetunnel flow conditionerswereableto quiet

anydisturbancescreatedby removingthetestsectionandopeningthetunnelto the

laboratoryflow. Notealsothefluctuatingvelocityprofile shownin Figure5.1was

consistentwith thatmaderationalby Foss(1977)for a laminarboundarylayer.That is,

thepeakin thefluctuationintensityandtheshapeof theE/U_,pdistributioncouldbe

explainedby amodulationin theheightof theboundarylayerandaproportionate

variation(_Sy/y=constant)for y valueslessthan_i.Therewasalocalmaximumin the

velocityprofile (-6= 1.02U_p)aty/0 _-7.This maximumin thevelocity profilewasan

artifactof thecontractionin thetunnelupstreamof themeasurementlocation.The

velocity profile appearedto berelaxingto _ = U,pfor y/0 greaterthan10.

5.2.2Upstream Pressure Distribution

The upstream static pressure survey, Figure 5.2, showed that the untabbed tunnel had

a smile pressure upstream of the tunnel exit nominally equal to the atmospheric value.

Note that all pressure distributions within are gage pressures with the atmospheric

pressure as the reference. This result was expected given the small percentage (0.1%)

change in area of the tunnel calculated from the momentum thickness. The peak values of

these data were P*=!-0_ .02. Note that these results indicated that the pressure taps were

functioning properly.
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5.2.3VelocityMagnitudeProfiles

Figures5.3a-5.5ashowtheaveragestreamwisevelocityfield downstreamof the

tunnelexit for theuntabbedjet. Theresultsfrom thesedataindicatedthedevelopmentof

theuntabbedjet to beasexpected.Specifically,theshearlayer,asdescribedby the

isotachlines,remainedstronglyalignedwith thetunneltopandsidewallsasthe

downstreamdistancewasincreased.Theshearlayergrewinto boththecoreandambient

regionswith slightly morepenetrationof theshearlayerinto theambient region. This

was expected given the higher momentum of the core flow and the entrainment of

ambient fluid.

Turbulence intensity values are presented in Figures 5.3b-5.5b. The maximum

turbulence intensity for the three measurement planes was located at x/b=0.7 (nominally

Umax= 0.18Uup). This value was located near the center of the shear layer. The values

indicated that the velocity field was highly turbulent in the sheared region of the free jet.

Note that these maxima are characteristic of single stream shear layers (Wygnanski and

Fiedler (1970) and Bruns et. al. (1991)).

5.3 Primary Tab Jet: Preliminary Results

5.3.1 Upstream Pressure Distribution

Figure 5.6 shows the upstream static pressure distribution for the primary tab

geometry. A static pressure distribution, P(x,y), was indicated upstream of the tab. This

pressure distribution was created as a result of placing the primary tab into the core flow

and changing the streamline patterns upstream of the tab. The observed peak static

pressure was found to be P*=0.7 at x/b=-0.05 and y/b=0. (Larger pressures could exist



56

closerto thetab/nozzlewall junction assuggestedby Figure5.6.)A significant drop in

static pressure occurred along the centerline of the tunnel from x/b=-0.05 to x/b=-1. That

is, the static pressure decreased from P'=0.7 to P*---0.2 for these values. From x/b=-I to

x/b=-1.95 (the farthest upstream measurement location ) the static pressure decreased

from 0.2 to 0.15. A pressure distribution, in the y-direction, was also indicated by Figure

5.6. These pressure values ranged from a maximum value of 0.7 at x/b=-0.05 and y/b=0,

to nominally atmospheric at x/b=-0.05 and y/b=-l.4. Note that this static pressure

distribution was qualitatively similar to that reported by Zaman et. al. (1994) for a round

tabbed jet.

5.3.2 Surface Streak Observations

Surface streaking experiments were performed upstream of the tab face to further

clarify the flow characteristics. The streaks were acquired by taping mylar sheets to the

tunnel surfaces upstream of the exit and to the tab faces. The tab faces were then cut out

of the mylar sheet such that the mylar sheet covered only existing surfaces. A red

pigment (Day-Glo Red AX-13) was mixed with kerosene and was painted onto the mylar

sheet. The tunnel was then turned on with an approach velocity of nominally 10.5 m/s

and the streaking was allowed to progress until the mixture dried. The pigment was

affixed to the mylar sheet with a clear spray fixative. The streak patterns were

photo-reduced and scanned into electronic format.

Figure 5.7 shows the surface streaking results for the primary tab geometry. Note that

the tab orientation was the same for these data as for the other data presented in this

report (Figure 2.4) although the results for the tunnel and tab surfaces are presented as
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thoughtheyexistedonthesamex-y plane.Thesetracesshowthecomplexsurface

patterncreatedby theprimarytabgeometry.Foursingularpointscanbe identifiedalong

thecenterlineof theflow field. Specifically(from left to right) a saddle,node,saddle,

nodepatternwasobservedasshownin Figure5.8.Two topologicalargumentswere

madeto showthatthispatternwasallowable.Viewing thegeometryfrom thetop, a

spherewith two holeswasdrawnasshownin Figure5.9.Thesphere,in thiscase,was

flattenedsuchthatits upperandlowersurfacescontainthevectorfield defined by the

wall shear stress distribution. The holes are selected such that the velocity is

perpendicular tot he exposed edges. The lateral edges of the flattened sphere are referred

to as seams. The subject vector field is everywhere tangent to a seam. Note that a sphere

with two holes has an Euler characteristic, _ua_, of zero. This value, _ua_, was found

by identifying the Euler characteristic for the present surface as that for a sphere (+2)

with the with the addition of two holes (-1 each). Hence, for the present case, _urr_ ---0.

The sum of the indices of the singular points on the subject surface is equal to the Euler

characteristic for that surface by:

E N- _ S = _surfa_ (5.1)

where N and S are the number of nodes and saddles respectively. There had to be an

equal number of nodes and saddles in this case for the nodal pattern to be allowed; thus

the pattern shown in Figure 5.9 was allowed, but not unique.

This limitation (i.e. the lack of a unique solution) of a topological analysis is made

clear if the node on the primary tab face (N2) is examined. In Figures 5.7 this node

appeared to be a line of singular points. An alternate topological argument could be made
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ifone considered thenode (N2) tobc partofthe followingpattern:node, saddle,node,

saddle,node as shown in Figure5.I0.Thisconfigurationof singularpointshad one net

node and thereforehad thesame implicationstopologicallyasthe one node (N2) used in

theprevious analysis.Any combination ofnodes and saddleswhich had one net node to

replaceN2 was thereforean allowablepattern.Figure 5.8 shows thesimplesttopological

argument thatwas permitted.

A second topologicalinferencewas made by vicwing the flow inthe x-zplane as

shown inFigure 5.1I.Inthisview therewas alsoa flattenedspherewith two

holes(Z_,_----_).Note that,the sphere,inthiscase,was flattened.Equation (5.l)is

modified to accommodate the flattened sphere by:

2ZN+Z N'- 2Zs- Z (5.2)

where N' and S' arenodes and saddlesthatlicon the scarnof theflattenedsphere (note

thesesingularpointsarc dubbed "halfnodes" and "halfsaddles").The indicatedsurface

singularpointswere four "halfsaddles"inthiscase.These singularpointsgave -4 which

was not equal toZs,a_. Notc thattwo halfsaddles,$2' and $4',were shown inFigure

5.9 as nodes N l and N2. This change infrom node tosaddlewas due tothe change in

orientationof thc analysis.The sum of the singularpointson the surfacepointsindicated

thatmore singularpointsinthe flow fieldwere required.These were inferredtobe

locatedabove the surfaceas shown inFigure5.II.The inferredpatternwas the least

complicated patternthatsatisfiedthe topologicalconstraintsof the system.Itisimportant

torealizethatthe distancesof the fourfullsingularpoints,from thebounding surface,is

cxaggcratcdin Figure5.lI.(Note alsothatthe followinginferencesarcmade rationalby
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the streamwise vorticity data presented in sections 5.6.6 and 5.6.7.) The value of _

was zero with these full nodes and saddles added in. The most upstream node (N 1)

represented the approach boundary layer vorticity which separates from the surface. This

vorticity is related to the organized motion that has been referred to as the "necklace

vortex" by various authors; see, e.g., Zaman et.al. (1991). The second half saddle point

($2') was an attachment point for the flow (N1 in Figure 5.9). It was inferred that the

second node (N2) was characterized by vorticity with the opposite sign as compared

with the approach boundary layer. In particular, the sign of the vorticity in N2 is

compatible with the dominant streamwise vorticity downstream of the exit. As shown

below, this inferred sign of the vorticity in N2 is required to account for the "solenoidal

condition" (V. _'= 0) of this dominant motion. (These dominant motions correspond to

the vorticity created by the upstream pressure distribution.) The final full node (N3)

denotes vorticity with the same sign as the approach boundary layer and corresponds to

the second attachment point. Note that the full saddle ($5) was required to create a

smooth vector field in the indicated plane and to bring the sum of the singular points to

zero.

The streak lines presented in Figure 5.8 were used to describe the s- and b- directions

at the wall used in (1.6) to determine the flux of vorticity into the flow from the pressure

gradient. Recall that the s-direction was parallel to the direction of the flow, and was

therefore described by the direction of the streaks. The b-direction was perpendicular to

A
the streaks such that s x _a= _. In Figure 5.8 the s-direction would be the x-direction and

the b-direction would be the y-direction well upstream of the tab. This implied a flux of
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tt_ into the flow because of the tab induced pressure gradient (0 P/0 x greater than 0

for y _ 0). As the separating streamline was approached along the centerline (i.e. for y--0)

the s-direction shifted to become aligned with the y-direction. The s-direction was

strongly aligned with the y-direction in the separated region directly upstream of the tab

indicating a flux cox from the pressure gradient into the flow.

Note that it was not possible to determine, from the streak patterns alone, what

happened to the vorticity once it was introduced into the flow. The streak results

indicated some of the boundary conditions for the flow field. The streamwise vortieity

results (presented in sections 5.6.6 and 5.6.7) also represent part of the solution of the

flow field. Flow mechanics may be inferred by using these data in combination. These

inferences will be made once the streamwise vorticity data are presented.

5.3.3 Streamwise Velocity Distributions

Figures 5.12a-5.14a show the average streamwise velocity magnitudes plotted for the

primary tab geometry. These data show the effect that the passive mixing tabs had on the

average streamwise velocity field; namely,the shear layer became aligned with the side of

the tab and the tunnel side wall. Near the top of the tunnel a "plume" of fluid, ejected

from the core region into the ambient region, was shown. A significant region of high

speed fluid was found above the projected tunnel exit in the plume region unlike the

distributions for the untabbed geometry. This area of high speed fluid appeared to be

increasing in size for the downstream locations investigated. A large region of low speed

flow was seen directly aft of the tab. This low speed region also grew in size as the

downstream distance was increased. In addition, these data also suggested that the flow
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wasdisplacedlaterallyasthedownstreamdistancewasincreased.Thiswasshownby the

increaseddistanceof theisotachlinesfrom thetabandtunnelsidewall. These

observationsillustratedthestrongtendencyof thetabbedjet corefluid to expandrapidly

into theambientregion.

Theturbulenceintensityvalues,Figures5.12b-5.14b,alsorevealedanimportant

aspectof this flow. Themaximumturbulenceintensitywasfoundto benominally

_---0.18U,p.This valuewasfoundin theregionof the shearlayerwherethejet fluid was

penetratinginto theambientregion,i.e.in theplume.It is instructiveto notethatthepeak

turbulenceintensityshowedno increasewhencomparedto thatfor theuntabbed

geometry.This suggestedthatthelargescaleexchangeof fluid wasnotassociatedwith

anincreasein theturbulencelevels,but ratherit wasaresultof thestreamwisevorticity

thatwaspresentat thejet exit planecreatedby theupstream"pressurehill". Note

howeverthattheuseof atabhasalsobeenshownto increasethesmallscalemixing and

dissipationin theshearlayer(FossandZaman,(1996))whichsuggeststhatthepassive

mixing tabscouldbeusedto enhanceboth largescaleandsmallscalingmixing.

5.4 Addition of the Secondary Tabs

5.4.1 Motivation for Modification of the Primary Tab Geometry

One of the goals of the present study was to determine methods for increasing the

large scale exchange of fluid between the core and ambient regions using the tabbed jet

concepts. The modified tab geometry was conceived using the results from Section 5.3. It

was noted while performing the experiments on the primary tab geometry that the flow

had a naturally "upward" (+z direction ) trajectory along side of the primary tab, i.e. for
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y/b<-0.5. Using a woolen tuft this trajectory was estimated to be nominally 10 degrees at

the tunnel exit. It was surmised that the expansion of the core fluid into the ambient

region could be increased if attachment surfaces were provided. It was found that when

the secondary tabs were added, the flow could achieve an upward trajectory of nominally

45 degrees before separation from the secondary tabs was detected.

5.4.1 Determination of the Secondary Tab Orientation

The final orientation for the secondary tabs was determined by varying the angle of

the secondary tabs and measuring the static pressure just upstream of the exit for each of

these angles. Figure 5.15 shows the results of this survey. This survey was conducted by

setting the angular position of the secondary tabs and surveying the static pressure for

y-locations from y/b=-0.5 to - 1.2 for x/b=-0.05 (the taps closest to the exit plane of the

jet). The angular position of the secondary tabs was varied from 0 degrees, i.e. horizontal,

to 50 degrees up from horizontal. These data indicated that there were two distinct

angular positions of the secondary tabs that created locally minimum pressure regions in

the upstream pressure field. From g= 10 to _= 15 degrees a small region of negative

pressure was found upstream of the secondary tab. The second region was from g=20

degrees to c=50 degrees. The selected position of c--40 degrees for the secondary tabs

was chosen because it contained the largest negative static pressure region in the survey.

Note that as of the time of this report no additional data have been acquired for other

angular positions of the secondary tabs. All further data presented within this report were

for a---40 degrees.
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5.5 Modified Tab Geometry: Preliminary Results

5.5.1 Upstream Pressure Distribution

The results of the upstream static pressure distribution are shown in Figure 5.16.

These data show that the upstream static pressure distribution for the modified geometry

was qualitatively similar to the primary tab geometry shown in Figure 5.6. However,

there were two significant differences in the pressure fields. First, the observed peak

value of the pressure coefficient increased from 0.70 for the primary tab geometry to 0.72

for the modified tab geometry. Second, a region of subatmospheric pressure was

measured at the exit of the tunnel, i.e. for x/b=-0.05 and y/b from -1.1 to -0.8.

5.3.2 Surface Streaking Observations

The results of the surface streaking for the modified tab geometry are presented in

Figure 5.17. These observations showed the same trends upstream of the primary tab as

were discussed in section 5.3.3.

An interesting pattern was seen on the surfaces of the secondary tabs. The streak

patterns in these regions showed a bifurcation line (i.e. a line along which two distinct

flow patterns are merged) which followed along the face of the secondary tab. The flow

separated from the outer portion of the secondary tab as indicated in Figure 5.17 while

remaining attached to the inner portion. This indicated that only a portion of the

secondary tab may be needed for the same effect to be achieved. This was significant in

that it may be possible to optimize the shape of the secondary tabs to reduce the projected

area of the secondary tabs in the ambient flow. Note, in a typical gas turbine engine this
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outerregionis composed of cool co-flowing fluid. It will be desirable to minimize the

projections of tabs into this flow in order to maximize the fan flow.

The direction re-oriented boundary layer vorticity was tracked upstream of the tunnel

exit using a wool tuft. Its trajectory was very similar to the streak pattern of Figure 5.17.

Specifically, the re-oriented boundary layer followed a path similar to the bifurcation line

on the tunnel wall and proceeded along this side of the secondary tab nominally with the

same path as the bifurcation line shown in Figure 5.17. The re-oriented boundary layer

vorticity separated from the tab face at nominally half way up the outer edge. The

orientation of this vorticity upon leaving the surface was such that there were significant

non-streamwise components of vorticity (a b and oh). This was shown by the direction of

the tuft which was not directly in the streamwise direction at the point of separation. This

was rational since the inferred velocity gradient in the re-orientation term cab 3 u/3 y

from (1.7) was small in this region. This was in direct contrast to the inner edge of the

secondary tab, yfo=-0.5, and at the tunnel surface where the vorticity induced by the

pressure hill was strongly streamwise due to the large inferred _ u/_ y in that region.

Note that in a jet flow with both a core flow and a co-flow this velocity gradient should

be larger which will re-orient the boundary layer vorticity more into the x-direction. This

in turn should increase the effectiveness of the modified tab geometry even further.

5.5.3 Streamwise Velocity Distributions

The results for the streamwise velocity surveys for the modified tab geometry are

shown in Figures 5.18-5.20. The average velocity and turbulence intensity results
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showedsimilar trendsaswereseenin Figures5.12-5.14for theprimarytabgeometry.A

comparisonof theresultsfor all threegeometrieswill bemadein section5.6.3.

5.6Comparisonof Jet Geometries

5.6.1 Discussion of the Static Pressure Fields
p

Tuft observations showed that the flow had approximately 10 degree upward (+z)

trajectory in the plume region at the exit plane of the jet for the primary tab geometry.

This upward trajectory was increased to approximately 45 degrees for the modified tab

geometry. These observations can be used to describe the differences in the static

pressure fields of the two tabbed geometries.

Figures 5.21 and 5.22 are schematic representations of the streamlines at some y

location near a secondary tab (y/b = -1). The flow had a slight upward trajectory with

only the primary tab, as shown in Figure 5.21. The associated streamline curvature

created a pressure gradient perpendicular to the streamlines. Given the Euler-n equation

evaluated for a steady flow:

3p V z

an - p R (5.3)

the pressure will increase on a curve drawn in the outward normal direction and

perpendicular to the streamlines. Equation (5.3) indicated that the pressure at locations

along the exit of the tunnel, where there was an upward trajectory of fluid present, must

have been subatmospheric. Note that in the case of the primary tab geometry this effect

did not extend into the tunnel far enough to be detected by the pressure taps closest to the

exit (i.e. for x/b=-0.05). In contrast, the streamlines for the modified tab geometry were
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characterized by a smaller radius of curvature because the flow remained attached to the

secondary tabs. This is shown schematically in Figure 5.22. The change in the streamline

curvature resulted in the modified upstream static pressure field shown in Figure 5.16.

Specifically, because the curvature of the streamlines was more compact (i.e. smaller R)

for the modified tab jet, the magnitude of the pressure gradient normal to the streamlines

increased and the subatmosphefic region increased in size and magnitude.

Figure 5.23a shows the pressure distribution as a function of y for x=-O.05b (the most

downstream pressure tap). These data support the above analysis of the flow field using

the inferred streamlines. Specifically, the region of negative pressure was clearly shown

for the modified tab geometry. Note that a negative streamwisc pressure gradient is

favorable to the boundary layer. The modified tab geometry also showed an increased

peak pressure at x=-0.05b and y=0 when compared to the primary tab geometry.

Equation (1.6) indicated that a pressure gradient in the y-direction will flux cox into the

flow field. This quantity was calculated and plotted in Figure 5.23b. These data show that

the peak in the pressure gradient (0P*/c3( Y/b)) occurred at y=-0.5b ( the edge of the

primary tab) and that there was a slightly higher peak in the positive gradient for the

modified tab geometry.

An interesting feature of Figure 5.23b was the local minimum value for the modified

tab geometry at y=-0.9b. The pressure gradient changes sign for the modified tab

geometry from y=-0.8b to y=-l.2b. This indicated that a flux of +O)x ,which served to

reinforce the reoriented boundary layer vorticity, was introduced into the flow in that
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region.Thischangein thepressuredistributionrepresenteda significantchangein the

flow fieldsfor thetwo tabbedgeometries.

A plot of P*(x,y=0)is presentedin Figure5.24a.Thesedataagainshowtheslightly

higherpeakP"valuefor themodifiedtabgeometryat x=-0.05bandy--O.Note thatthe

pressuredistributionsbecomenearlyidenticalfor x<-0.85b.Equation(1.5) indicatedthat

apressuregradientin thex-direction(shownin Figure5.24b)will flux ob into the flow

field. These data indicated that a slightly higher flux of tab will occur for the modified tab

geometry. It was instructive to note in Figure 5.23a the slight back pressure shown for

the untabbed jet which indicated that the flow continued to accelerate slightly in the

tunnel extension.

5.6.2 Comparison of the Streamwise Velocity Fields

Several parameters were created in order better quantify the changes in the distortion

of the average streamwise velocity field for the three geometries. These parameters,

evaluated from the average streamwise velocity fields, were developed to aid in the

interpretation of the available data. Figure 5.25 shows the definition of the three

penetration measures overlaid on the modified tab geometry streamwise velocity data at

x/b-2.0.

The maximum penetration of the shear layer into the core region, as defined by the

minimum z-location along the 0.95 contour line at y--O, was described by _o_. Figure

5.26 shows this measure plotted versus the downstream distance. It was clear that the tab

created a large low speed region downstream of the primary tab. It was also clear that this

wake region did not display typical characteristics. Specifically, the velocity deficit (Uup -
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u-)remainedconstant rather than decreasing and the area of high velocity deficit (i.e. low

u-) increased in size. These data implied that the penetration of the wake into the core

region continued well past x/b=2.0 for the tabbed jets. This observation was supported by

the results of Zaman et. al. (1992) which showed that the jet bifurcated into two distinct

regions of core fluid at a downstream distance of x/D=4.0 for a round jet with two

primary tabs. (D was used to designate the diameter of the round jet.) The degree of

penetration, as revealed by this measure, did not appear to be significantly different

between the primary tab and modified tab geometries.

A second measure of the distortion in the flow field was described by Sadist. This

measure, shown in Figure 5.27, was defined by the maximum z-location that the shear

layer penetrated into the ambient region along the 0.15Uut, contour line; see Figure 5.25.

This measure clearly detailed both the distortion in the flow field by the primary tab

alone and the enhanced distortion created by the addition of the secondary tabs. The

primary tab geometry showed a nominally 250% increase in the depth of penetration of

the shear layer into the ambient region over that observed for the untabbed geometry.

The addition of the secondary tabs increased the penetration to nominally 400% over the

untabbed geometry.

Finally, in a typical jet flow the shear layer grows into both the core region and the

ambient region. The average streamwise velocity results for both tabbed geometries

showed that there was a significant region of high speed fluid above the projected exit

plane of the jet. Figure 5.28 shows 5highspeedversus the downstream distance. 5highsr_

was defined by the maximum z-location of the 0.95 contour line; see Figure 5.25. These

data showed that early in the tabbed jet development, the high speed fluid (i.e. fluid with
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greater than 0.95Uup ) extended well into the ambient region. It was expected that this

penetration of the high speed fluid from the core flow would decrease as the jet continued

to develop downstream. Specifically, as the jet becomes fully developed the region

described by the 0.95Uup contour will decrease in size; hence _gh st_a will f'trst decrease

to zero, then become negative. Note that the untabbed geometry showed a negative

penetration of high speed fluid indicating that the high speed fluid was, as expected,

contained within the core region.

An alternate measure of the growth in the shear layer was represented by the shear

layer momentum thickness, O, defined by

O = Iu" (l-u*) dn (5.4)

where

U*=(U-Umin)/(Um_x-Um_) (5.5)

and n is the direction of the velocity survey in the y-z plane. This direction was different

for the three surveys performed. See Figure 5.29. Note that in (5.8) Umi_was the

minimum velocity (nominally 0.1U.p) measured in each traverse. Equation (5.8), typical

of a two stream mixing layer, was adopted to normalize the velocity traverses for this

section of the results because of the difficulty in accurately measuring flow speeds below

the minimum calibration speed (section 4.2). Three regions of the shear layer were

investigated to provide a measure of the shear layer characteristics. Note that (5.7) was

first evaluated using data from the velocity surveys already presented. These data were

found to have too few data points in the shear layer for an accurate calculation of the

momentum thickness. Therefore, additional single sensor hot wire data were taken to
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allow better calculation of 0. Figure 5.29 shows the locations where the shear layer

thickness was evaluated for the primary tab geometry at x/b=2.0.

The plume, where the penetration of the shear layer into the ambient region was a

maximum, was the first region investigated. The shear layer thickness was found to have

a maximum value in this region. The location of this survey was determined by viewing

the average velocity profiles and determining the y location where _igh sp_d Was a

maximum. At this location the shear layer thickness was a maximum and a line drawn

perpendicular to the isotachs was oriented nominally in the z-direction. If a traverse were

conducted at another location then the shear layer momentum thickness would have been

artificially inflated. This can be clearly seen for the traverse indicated by the dashed line

in Figure 5.29. Two checks of the results were made to guard against this potential. First,

if a velocity survey were not perpendicular to the shear layer there would be a region in

the traverse data where the velocity profile was distorted. For example, in the limiting

case where a velocity survey was parallel to an isotach the velocity would be constant

and the velocity profile would not have been as expected for a shear layer. All surveys

were plotted and visually checked to avoid this condition. The second check was a self

consistency check. A zero pressure gradient shear layer will have a growth rate that

becomes constant in the self preserving region. The data were checked against this trend.

Results which did not fit this trend were retaken.

The second interrogated region was the shear layer that was aligned with the side of

the tab. In this survey, a traverse was performed perpendicular to the edge of the tab and

at the midpoint of the edge of the tab. The third survey was conducted in the z-direction
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off the tip of the tab. Both of these surveys were also checked through the plotting of the

surveys and by checking for linear growth.

The shear layer momentum thickness in the plume was plotted versus the

downstream distance for all three geometries in Figure 5.30. Data for the untabbed jet

were taken at the top center line of the tunnel. The data for the untabbed jet showed the

expected characteristics. Specifically, the shear layer growth quickly became linear.

Although it was not shown here, the first three measurement locations in the downstream

survey displayed laminar/transition shear layer characteristics. The growth rate, d0/dx,

found by fitting the points in the survey from x--0.4b to x=2.0b, had a value of 0.035.

This was consistent with experimental values from other single stream shear layers (see

Leipmann and Laufer (1947) and Bruns et. al. (1991)).

The results from the plume region illustrated the increased distortion of the modified

tab geometry. The momentum thickness for the primary tab geometry was slightly larger

than that for the untabbed jet due to the distortion in the shear layer in this region.

However, the primary tab geometry had the same growth rate (d0/dx--0.035) as was

found for the untabbed jet. The modified tab geometry results indicated that the

momentum thickness was nominally twice those for both the untabbed jet and the

primary tab geometry. In addition the growth rate had increased from 0.035 to 0.050.

These data implied that the modified tab geometry deformed the shear layer in the plume

region.

The side and bottom momentum thickness surveys, Figure 5.3 l, showed that the

primary tab and modified tab geometries had similar effects on the flow field. The

bottom momentum thickness, 0bottom, was the smallest of all of regions investigated. This
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was not surprising since this shear layer originated at the location where the tip of the tab

ended in the flow field, at a downstream distance of x/b--0.61. The growth rate, 0.024,

was much smaller than the untabbed jet's growth, 0.035. This result was supported by the

observation that the shear layer in this area grew almost exclusively into the high speed,

high momentum region. The high momentum of the core flow retarded the growth rate of

the shear layer in this region. Along the side of the tab the momentum thickness, Ot_n,,

and the associated growth rate, 0.027, were between those reported for 0bottom and Opl_-_.

These data indicated that the shear layer thickness and growth rate increased as the top of

the tunnel was approached from the core region.

It was also made clear from these data that the effect of the secondary tabs was

localized to the top portion of the flow field. Specifically, both the penetration measures ,

and the momentum thickness measures below the tunnel top (for z<0) showed identical

values for both geometries. These same measures above the tunnel were substantially

increased for the modified geometry.

Figures 5.18a-5.20a, when viewed in sequence, showed the flow field for the

modified tab geometry to have experienced a large scale rotation in the plume. For these

data at x/b--0.7 a line drawn perpendicular to the plume contour lines pointed in the -y

and + z direction. At x/b=l.2 this same line appeared to be directed in the +z direction.

And finally at x/b=2.0 the line pointed in the +y and +z direction. Note that the apparent

center of the rotation was displacing laterally (i.e. in the -y direction) with the shear layer

as the downstream distance was increased. This apparent large scale rotation in the plume

was less evident in the primary tab geometry data but it was apparent given close
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inspection. It should be noted that the turbulence intensity plots, Figure 5.18b- 5.20b,

also showed this same large scale rotation in the flow field.

A significant difference between the average streamwise velocity data presented for

the primary and modified tab geometries was most clearly seen at x/b=2.0. In Figure

5.20a there was a large region of fluid with a significant streamwise velocity in the wake

region of the tab. During the data acquisition at x/b=2.0, and to a lesser extent at

x/b=l.2, for the modified geometry it was noted noted that in the low speed region of the

flow field downstream of the tab the flow was highly intermittent. Oscilloscope traces

revealed that highly turbulent/active fluid periodically passed by the probe. These times

of "active" fluid passage were separated by what appeared to be times of nominally

quiescent low velocity fluid.

A comparison of the peak value of the turbulence intensity for the three geometries

revealed a slight increase for the modified tab geometry. The peak values were found to

be 0.18U,p for the untabbed and primary tab geometries and 0.21U,p for the modified tab

geometry. These results further support the conclusion that the characteristics as well as

the shape of the shear layer were changed for the modified tab geometry.

5.6.3 In-Plane Velocity Results and Comparison

The in-plane velocity results at x/b= 1.2 and 2.0 indicated the source of the strong

outflow of the core fluid into the ambient region. Figures 5.32 and 5.33 show the average

lateral, V, velocity contours for the primary tab and modified tab geometries respectively.

These data show a significant lateral velocity _ -- -0.2Uup) away from the tab in the core

region. Note that the modified tab geometry showed a distinctly larger lateral velocity
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_max = --0.24Uup) when compared to that of the primary tab geometry _ma_ = -0.21Uup)

indicating an increased expansion rate for the flow field. Additionally, there was a

significant lateral velocity above the projected top surface of the tunnel for both

geometries, although this region extended farther into the ambient region for the

modified tab geometry.

At x/b=2.0 the _ velocities decreased in magnitude for both geometries. The primary

tab geometry, Figure 5.32b, showed a small decrease in magnitude of the maximum in

lateral velocity along side of the tab (from _max = -'0.21Uup at x/b=l.2 to _,m = -0.20Uup

at x/b=2.0). There continued to be a significant lateral velocity above the top of the

tunnel. The results for the modified tab geometry, Figure 5.33b, showed a more

significant decrease in magnitude of _ (from nominally -0.24Uup to -0.18Uup), however

the lateral velocity in the plume region continued to be significant showing very little

decrease in magnitude.

The W profiles, shown in figures 5.34 and 5.35, confirmed the upward (+z-direction)

flow trajectory for y=-b and z=0 as well as the downward (-z-direction) trajectory for y=0

and z<-0.8b. The velocity in the second region resulted from the re-direction of the

upstream core fluid by the physical surface of the tab. The re-direction of the core flow

has been shown to bifurcate a jet into two distinct regions of high speed fluid for a round

jet with two opposing tabs (Zaman et. al.(1992)).

These data for the modified tab geometry data at x/b=l.2, shown in Figure 5.34a,

showed that the up-wash, i.e. expansion into the ambient region, effect was enhanced

with the addition of the secondary tabs when compared to the primary tab geometry; see
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Figure 5.33a. Specifically, in the plume region the _ magnitudes were seen to be

significantly larger than those seen for the primary tab geometry (0.21Uup compared to

0.16Uup). It was instructive to note the downward flow below the projected tip of the tab

(for the modified tab geometry) had nominally the same value as was seen for the

primary tab geometry at the same location. This observation was in agreement with the

earlier results which showed that the effects of the secondary tabs were limited to the

portion of the flow above the projected tunnel top wall.

Figures 5.34b and 5.35b show the _ velocity contours at x/b=2.0 for the primary tab

and modified tab geometries respectively. These data indicated that the plume region

continued to have a strong +_ velocity component although the magnitudes had

decreased. The downward penetration of the shearlayer also appeared to be slowing as

expected since the high x-momentum of the core fluid will overcome the downward

momentum of the fluid redirected by the tab.

The turbulence intensity data for the y-z plane velocity components are presented in

Figures 5.36-5.39. The shear layer was aligned with the side walls and tab surfaces and

the peak values occurred in the plume region of the flow. Note that the location of the

high fluctuations corresponded to the location of the largest gradient in the average

streamwise velocity as would be expected if these peak values represented the effects of

turbulence kinetic energy production. The peak values for the lateral and normal velocity

fluctuations were nominally 0.16U.p. This was in contrast to the streamwise velocity

component which showed a peak fluctuating value of nominally 0.18Uup for the primary

tab geometry and 0.21Uup for the modified tab geometry. The fluctuating results were

similar when the primary tab and modified tab geometry results were compared.
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5.6.4 In-plane Vector Results and Comparison

Vector fields made up of the _ and _ values were plotted to better allow the y-z

plane features of the flow field to be determined. Each data set is presented with both

scaled and unscaled vectors, see Figures 5.40-5.43.

The scaled y-z plane vector plots are presented in Figures 5.40a -5.43a. All four

figures showed similar trends with varying magnitudes. The region behind the tab (in the

wake of the tab) had a very small in-plane velocity with respect to the free stream value.

This was expected in that the fluid flow in this region will be a result of either

recirculation of core fluid or entrainment of ambient fluid. Both sources were expected to

provide velocity magnitudes that were small compared to the approach velocity. Note

that the vectors in this region were directed in the -z-direction which indicated there was

an entrainment of ambient fluid into the core flow. A strong in-plane velocity was

encountered primarily in the -z direction for z/b<-0.65 and yfo--0. This result was

expected since the flow should be symmetric about the centerline of the tab. The y-z

plane velocity vector in this region was found to be the strongest in the flow ( nominally

0.27U_ for the modified tab geometry and 0.26 for the primary tab geometry at x/b=l.2).

For y<-0.5b and z<0 (within the projection of the tunnel) there was a very strong

outward velocity as shown by the vectors which pointed in the -y-direction (away from

the primary tab). The y-z plane velocity vector was dominated by _ in this region.

An interesting feature of these vector plots was found in the plume region above the

projected top of the tunnel wall. There was a strong ejection of fluid from y=-0.Tb to

-1.1b for z greater than 0. This ejection penetrated up to z=0.Sb in the ambient region for
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the modified tab geometry. The velocity magnitudes in this region were near, but slightly

less than, the velocity magnitudes seen below the tab in the core region (i.e. 0.24U,,p

compared to 0.27Uup for the modified tab geometry at x/b=l.2). This observation

indicated that the ejection of fluid from the core region was a strong feature of the flow

field. Note that the velocities in the plume represented the most significant difference in

the velocity field of the two geometries. Specifically, the y-z plane velocities were

noticeably smaller in the plume region for the primary tab geometry at the same

downstream location when compared to the modified tab geometries at the same location

(i.e. 0.21Uup compared to 0.23Uup at x/b=l.2).

Unscaled vectors, i.e. vectors with constant length, are also presented with y-z plane

streamlines in Figures 5.40b-5.43b. Simplified plots with streamlines and the indicated

singular points are presented in Figures 5.40c-5.43c. These data indicated four singular

points in the flow fields (2 nodes and 2 saddles) for all but the primary tab geometry at

x= 1.2b which showed two singular points (a node and a saddle). (Note the node at

z/b---0.3 and y/b=-0.9 in Figure 5.43c does not show a spiral to the node. This is inferred

to be a result of the data grid spacing.) At the singular points the in-plane velocity

directions were indeterminate (-q and _ were both zero; see Figures 5.40c-5.43c) and a

singularity resulted. In this flow field there were two saddle points and two nodal points.

The two nodal points for these data indicated a flux of mass out of the y-z plane by the

streamlines which pointed into both nodes. Figures 5.40d-5.43d also show schematic

outlines of the domains for which an even number of nodes and saddles must be present.

The surface was made up of a collapsed sphere with 2 holes (Zs_ae¢=0) which was

balanced by the even number of nodes and saddles shown for all of the data.
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5.6.5 Reynolds Shear Stress Results and Comparison

The turbulent shear stresses were calculated using the x-array data at x/b= 1.2 and 2.0.

There were two regions of peak negative values in the W_"/U2p data; see Figures

5.44-5.47. These local minima occurred along the side wall and in the plume region. The

stress values along the side walls were nominally the same with a peak value of

h-'W/U2p=-l.25x10 -2 for both geometries. The results from the plume region showed that

the modified tab geometry experienced an increased stress level when compared to the

primary tab geometry. Specifically, peak values were nominally W'_'/U2_-l.25x10 "2 for

the primary tab geometry and h-"_/U2p= - 1.50x 10.2 for the modified tab geometry. This

was consistent with the the results in section 5.6.2 which showed an increased growth

rate in the momentum thickness of the modified tab geometry in the plume region. It was

instructive to note that the peak value for the primary tab geometry (-1.25x10 "2)

corresponded to that measured for the shear layer on the side wall of the tunnel indicating

that the shear stresses experienced in each region were comparable. This further

reinforced the observation that the shear layer in the plume region for the primary tab

geometry was not significantly different from the shear layer for the untabbed jet,

although it was significantly displaced into the ambient region.

Both geometries also showed a region of positive stress in the shear layer aligned

with the side of the tab. This corresponded to the change in sign of 0 _/0 y in the

average streamwise velocity field. Note also that the peak positive stress values were
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significantlyincreasedfor themodifiedtabgeometry.In thecoreregion,where 0 K/0 y

wasequalto zerothecorrespondingstressvalueswerealsonominallyequalto zero.

Renormalizingthesedataasfi'7"/_ _ providedinformationon thecross-correlation

coefficientsof thefluctuationsin thedata.Theseresults,presentedin Figures5.48-5.51,

showedthatthepeakcorrelationsoccurredin theregionswherethepeakstressvalues

werenoted.

Thefi"-ff-"/U2pstressvaluesarepresentedinFigures5.52-5.55.Thesedatashowed

positivevaluesin theplumeregionasexpected( _ _/3 z decreasedin theentireregion).

Thepeakvaluesagainshowedasignificantincreasefrom 1.25x10"2for theprimary tab

geometryto 1.50x10"2for themodifiedtabgeometry.This againsupportedtheprevious

observationof theincreasedgrowthratein theplumeregionshearlayerfor themodified

tabgeometry.Notethatalongthewall, wheretheshearlayer wasorientednominally

vertically,the stressvalueswerenominallyzero.

Thecross-correlationdata,Figures5.56-5.59,showthatthepeakpositivecorrelations

occurredin theregionof thepeakstressvalues.Again valueswerenominallythesame

for bothgeometriesaswasseenin the lateralresults.

5.6.6QualitativeVorticityResults

Theflow pitchanglesweretoosevereneartheexit of the jet for the use of x-arrays;

therefore, quantitative measurements were not made near the exit, as was noted in

Chapter 3. A cross-vane vorticity probe was used to determine some characteristics of

the streamwise vorticity field very near to the exit of the tunnel. Figures 5.60 and 5.61
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show the results for the downstream locations from O. 1 to 0.4 for the primary tab and

modified tab geometries respectively. These data were instructive in that they clearly

illustrated the effect of passive mixing tabs on on a jet flow as well as the differences

between the geometries.

There were two regions of streamwise vorticity shown for both geometries. The

region of positive sense vorticity (a result of the re-orientation of the vorticity in the

boundary layer) had a sign that was as expected for a "necklace" vortex about a

protrusion into the flow. The negative region of streamwise vorticity was a result of the

vorticity fluxed into the flow by the upstream static pressure distribution (i.e. the

"pressure hill").

A significant portion the streamwise vorticity was seen above the projected exit plane

of the tunnel for both geometries at all locations. It was interesting to note that both

geometries showed a significant portion of streamwise vorticity in the ambient region at

the closest location x/b--0.1. These observations indicated the strong upward expansion

of the flow occurs at the exit of the jet. Both geometries also showed the negative regions

to be several times larger in area than the positive sense regions for y<0.

The qualitative use of the cross-vane vorticity probe did not provide quantitative

results to be presented in this section. However, it was instructive to note that the rate at

which the cross-vane probe rotated did vary visibly as the downstream distance was

increased. It was observed that, at the more upstream locations, the cross vane probe spun

"faster". Moreover, the delineation between "spin" and "no spin"was more clearly

defined at the farther upstream locations. As the downstream distance was increased the

probe spun slower and the boundaries become more difficult to discern. Additionally, the
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areadescribingtheregionsof streamwisevorticity alsoincreasedasthedownstream

distancewasincreased.Notethattheoneexceptionto this trendwasobservedfor the

positiveregionin theprimarygeometry.Thesetwo observationsimpliedthatthe

negativesensestreamwisevorticity in theflow wasintroducedverynearto or upstream

of thetunnelexit, andthatthe increasedareawasaresultof thediffusionof this

vorticity. This observationwassupportedby prior resultsthatshowedthat it wasthe

upstreampressuredistribution,not thepressuredistributionon thetabfacethatprovided

themajorflux of thestreamwisevorticity in theflow (Zamanet. al. (1994)).The one

exceptionto this evolutionwastheregionof positivesensevorticity in theprimary tab

geometrycasewhichdidnot increasein areawith increasingdownstreamdistance.This

wasprobablya resultof its interactionwith the largerandstrongernegativesense

vorticity.

Thecross-vaneobservationsalsoillustratedthedifferencesbetweenthetwo

geometries.Specifically,thenegativesenseregionswereslightly largerin areafor the

modifiedtabgeometrythanfor theprimarytabgeometryatthesamex-locations.This

suggestedaslightly largertotalcirculationfor themodifiedtabgeometry.Thepositive

senseregionwassignificantlylargerin areafor themodifiedtabgeometry.This implied

asignificantincreasein thetotalcirculationfor thisregionof vorticity.

5.6.7Quantitative,SpatiallyandTemporallyAveragedStreamwiseVorticity Results

TheV and _ data were processed using (3.22) to provide the spatially averaged

streamwise vorticity, _*. Figures 5.62 and 5.63 show the streamwise vorticity results.

These data clearly showed two counter rotating regions of streamwise vorticity. The
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larger region was the negative sense vorticity created as a result of the upstream static

pressure gradient on the top wall of the tunnel. This region had a peak value of

_*=-1.60 for the primary tab geometry at x/b=l.2; see Figure 5.62a. The smaller region,

a result of the re-orientation of the approach boundary layer vorticity, showed a peak

positive vorticity value of nominally _*=1.22.

The equivalent data for the modified tab geometry at x/b=l.2 are presented in Figure

5.63a.These data showed the same two regions of counter rotating vorticity as were seen

in the primary tab geometry data, however the effects of the secondary tabs were again

illustrated in the differences between the data. The positive sense vorticity was nominally

the same size and magnitude as was observed for the corresponding region for the

primary tab geometry, although the peak value increased slightly to _'=-1.74 for the

modified tab geometry. This indicated that the total circulation in the negative sense

region was slightly higher for the modified tab geometry.

The primary difference between the two geometries was seen in the positive sense

vorticity at x=l.2b. This region increased significantly in both area and magnitude (and

hence in circulation) for the modified tab geometry. The peak value increased from

_*= 1.22 for the primary tab geometry to _°= 1.67 for the modified tab geometry.

The downstream evolution of the streamwise vorticity is shown in Figures 5.62b and

5.63b. These data show that the streamwise vorticity magnitudes decreased as the

downstream distance was increased. Note that the peak values were nominally the same

for both geometries at this location (_*=-1.3 and _*= 1.0). The increased spacing

between the vorticity contours from x= 1.2b to x=2.0b indicated the presence of
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significant diffusion of vorticity within the flow field. The vorticity contours also

indicated that the presence of the large scale rotation in the plume region described in

section 5.6.2.

These data further clarify and explain the vector patterns shown in section 5.6.4. The

two areas of counter rotating vorticity act as a "pump" to eject fluid from the core region

into the ambient region. A "current" was created in between the two regions of vorticity

because of the counter rotation. A fluid element caught in this "current" was ejected from

the core region. The exchange of fluid seen in the tabbed jet was a result of this pumping

action. Note that this explanation of governing phenomena is inherently different from

that which would be related to enhanced turbulence intensities and shear stresses. Figure

5.64 shows a combined plot of the streamwise vorticity and the y-z plane vectors for the

modified geometry at x/b=l.2. These data show that the ejection of fluid from the core

occurred between the two regions of vorticity in the flow. Note that the y-z plane

velocities seen in the plume between the two regions of streamwise vorticity had

magnitudes near the maximum y-z plane velocity values. The flow accelerated between

the regions and quickly decelerated after exiting the fluid "pump".

The streamwise vorticity results, in conjunction with the upstream static pressure

results, were also used to infer some of the upstream flow mechanics. It was shown that

there existed an adverse pressure gradient on the surface of the tunnel upstream of the

tab. However near the exit of the tunnel the pressure gradient became favorable for the

modified tab geometry in the region of y=-l. lb to y=-0.8b for x=-0.05b. In this region

the sign of 3P! 3y changed. Note that the sign of 3P/_x also changed for y constant over

the same range of y values. It was clearly illustrated that the additional flux of vorticity
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from thepressure gradient in this region significantly increased the streamwise vorticity

in the re-oriented boundary layer vorticity (i.e. the positive region for y<0).

A schematic representation of the vorticity connections upstream of the tunnel exit

can be inferred using a combination of the downstream streamwise vorticity observations

and the surface streaking data. Figure 5.65 shows the inferred connections from these

data. Specifically, the solenoidal condition requires that a vorticity filament: 1) end at a

wall (as a singular point for a viscous fluid), 2) end at infinity, or 3) forms a closed loop.

The regions of streamwise vorticity must, therefore, connect from one side of the tab to

the other since there is no indication of a swirl pattern on the _-kysides of the region

upstream from the tabs. The pattern shown is also compatible with the inferred pattern

from the topological analysis. It is instructive to note that the vorticity which corresponds

to N3 in Figure 5.11 did not appear in the downstream measurements. It is inferred that

this region of vorticity must be weak when compared to the other regions.

5.6.8 Availability of Results

The experimental data described above is considered to represent a valuable resource

for identifying the physics of tab jet flows and for the purpose of CFD code validation.

For the latter, it is noted that the upstream boundary conditions are well defined as are the

pressure values that will be part of the solution.

The interested reader may access these data by contacting Dr. John Foss at Michigan

State University via e-mail at foss@egr.msu.edu.
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Figure 5.7: Surface streaking results for the primary tab geometry.
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Figure 5.10: Alternate singular point pattern.
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Figure5.11"Sideview,centerplanetopologicalanalysisof theprimarytabgeometry.
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1.0

0.5

lO2

9 0.95

8 0.85

7 0.75

6 0.65

5 0.55

4 0.45

3 0.35

2 0.25

1 0.15

(a)

-0.5

-1.0

-2.0

1.0

0.5

"_0.0

-0.5

-1.0

-1.5 -1.0 -0.5 0.0

rib

7 0.23

6 0.20

5 0.17

4 0.14

3 0.11

2 0.06

1 O.05

(b)

-2.0 -1.5 -1.0 -0.5 0.0

v/b

Figure 5.20: Streamwise velocity survey for modified geometry at x/b= 1.2: a) _/Uup,

b) _/Uup.



103

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

(a)

1.0

0.5

-1.0

v/b
-0.5 0.0

7 0.2.3

6 0.2O

5 0.17

4 0.14

3 0.11

2 0.08

1 0.05

(b)

-0.5

-1.0

-2.0 -1.5 -1.0 -0.5 0.0

v/b

Figure 5.20: Streamwise velocity survey for modified geometry at x/b=2.0: a) _/Uup,

b) fi/Uup.



104

,/ .t /t 11 i ,_ i

_i.zl'/"l.'J_l_tJ j j" J l t /

Figure 5.21" Schematic representation of streamlines for the pr/mary

Y/b---1.0. tab geometry at



105

/ / /
/ /

r
I / / /

/"

//

//

/
/

Figure 5.22: Schematic representation of streamlines for the modified tab geometry at

y/b=-1.0.



106

0.7
0,1 Q..

:3

:_ 0.6
c:1.

1.0

E
"_ 0.4

I

>,.0.3
..Q

0 0.2
0

I

II 0.1
X

v

I:1.
0.01

--.--.ll.-- modified tab geometry

+ primary tab geometry

+ untabbed geometry

Ca)

-1.0

y/b
-0.5 0.0

0.0;

-1.0 -0.5 0.0

y/b

(b)

Figure 5.23: Pressure distribution for x=-0.05b: a)P*(x=-0.05,y), b)OP*/OX/b.



107

0.7

,,0.6

el. 0.5
t.O

0.4
E

IX. 0.3
!

O
II 0.2

x"
"_" 0.1
13..

0.0

-----.ll-.---- modified tab geometry

primary tab geomelty

unta_e¢l geometry

(a)

-2.0 -1.5 -1.0 -0.5 0.0

x/b

0.0

mod_ied tab geometry

pnmary tab geometry

+ untabbe(I geornetxy

(b)

-2.0 -1.5 -1.0 -0.5 0.0

x/b

Figure 5.24: Pressure distribution for y=O: a)P*(x,y=0), b)3P*/3YA_.



108

1"0f _ambi_t

_high speed

0

Note: contours shown are _/Uup

-1.5 -1.o y/b-o.5
0.0 0.5

Figure 5.25: Definition of penetration measures.



109

.Q

o

co

0.0 -

-0.2

-0.4

-0.6

untabbed geometry

primary tab geometry

modified tab geometry

4,

t , I .... I .... I .... I , , t I I 1 I I I I I I = I I

0.8 1.0 1.2 1.4 1.6 1.8 2.0
x/b

Figure 5.26: Penetration of the shear layer into the core region.



11o

0.9

0.8

_)

0.3q

untabbed geometry
primary tab geometry

-----I----- modified tab geometry

0.8 1.0 1.2 1.4 1.6 1.8 2.0
x/b

Figure 5.27: Penetration of the shear layer into the ambient region.



111

0°5 -

0.4

0.3

..Q

"-_ 0.2

=_ 0.1
t-
._m
t-

0.0

-0.2

-0.3

-0.4

untabbed geometry

primary tab geometry

modified tab geometry

A

W

lib
m

, I .... I .... I .... I .... 1 .... I .... I

0.8 1.0 1.2 1.4 1.6 1.8 2.0
x/b

Figure 5.28: Penetration of high speed fluid into the ambient region.



112

Oplume

Otip

Operp

-1.5 -1.o y/b-o.5 o.o
0.5

Figure 5.29: Location of shear layer momentum thickness measurements.



113

0.12

0.10

0.08
..Q
c_

0.06

0.04

0.02

0.00

.otab de/dx--O.050
_ '_c, Oeometty, pl_x_,e,

dO/dx-----O.035

0.5 x/b 1.0 1.5 2.0

Figure 5.30: Shear layer momentum thickness,0, for the plume.

0.12 i

0.10

0.08

0.06

0.04

0.02

0.00

:_ notab
pdmary ta_ geonletry, mid tab

primary tal=_mmem/, bottom

modified taJ_geometry, mid tab

modified taOgeometry, bottom

,_.035

__ dOIdx-_-O.027

- .024

' I I I _ I i i I _ t ' _ I _ r I I I
o.s ..,,_ 1.0 1.5 2.0

7_JU

Figure 5.31: Shear layer momentum thickness,0, for the side and tip shear

layers.



1.0

0.5

-0.5

-1.0

-2.(

114

1

.

-1.5 -1.0 -0.5 0.0

v/b

6 0.00

5 `0.05

4 -0.10

3 -0.15

2 -0.2.0

1 -0.2.5
(a)

6 0.00

5 -0.05

4 -0.10

3 -0.15

2 `020

1 `0.25

-1.0 -0.5 0.0

v/b

(b)

Figure 5.32: Average lateral velocity, V/Uup, for the primary tab geometry: a)1.2,

b)2.0.



1.0

0.5

-0.5

-1.0

-2.0 -1.5 -1.0

v/b

115

-0.5 0.0

6 0.00

5 -0.05

4 -0.10

3 -0.15

2 -0.20

1 ,-0.25

6 0.00

5 -0.05

4 -0.10

3 -0.15

2 -0.20

1 -O25

(a)

(b)

-2.0 -1.5 -1.0 -0.5 0.0

v/b

Figure 5.33: Average lateral velocity, 9"/Uup, for the modified tab geometry: a)1.2,

b)2.0.



(

i i

116

B

A

9

8

_ 7
_ 6

4

3

2

1

- .5 -1.0 -0.5 0.0

v/b

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.2O

-0.25

(a)

1.0 B 0.25
A 0.20

9 0.15

8 0.10

7 0.05

6 0.00

2 -0.20

1 -O.25

-1.5 -1.0 -0.5

v/b

Figure 5.34: Average transverse velocity, _/Uup, for the primary tab geometry: a)1.2,
b)2.0.



-1.0
/

117

B 02..5

A 0.20

9 0.15

8 0.10

7 0.05

6 0.00

5 -0.05

4 -0.10

3 -.0.15

2 -0.20

1 -0.25

(a)

-2.0 -1.5 -1.0 -O.5

¥/b
0.0

1.0

-1.0

B 0.25

A 0.20

9 0.15

8 0.10

7 0.05

6 0.00

5 -0.05

4 .0.10

3 -0.15

2 -0.20

1 -0.25

(b)

Figure 5.35: Average transverse velocity, W/Uup, for the modified tab geometry: a)1.2,

b)2.0.



1.0

0.5

_"_0.0

-0.5

-1.0

1.0

0.5

-0.5

118

I

-2.0 -1.5 -1.0 -0.5 0.0

¥/b

-1.0

7 0.23

6 0.20

5 0.17

4 0.14

3 0.11

2 0.08

1 0.05

7 023

6 0.20

5 0.17

4 0.14

3 0.11

2 0.08

1 0.05

(a)

(b)

-2.0 -1.5 -1.0 -0.5 0.0

v/b

Figure 5.36: Fluctuating lateral velocity, _/Uup, for the primary tab geometry: a)1.2,

b)2.0.



1.0

0.5

-0.5

-I .0

119

7 0.23

6 0.20

5 0.17

4 0.14

3 0.11

2 0.08

I 0.08

(a)

-2.0 -1.5 -0.5 0.0

1.0

0.5

-0.5

-1.0

-2.0 -1.5 -1.0 -0.5 0.0

v/b

7 0.23

6 0.20

5 0.17

4 0.14

3 0.11

2 0.08

1 0.05

(b)

Figure 5.37: Fluctuating lateral velocity, _¢/Uup, for the modified tab geometry: a) 1.2,

b)2.0.



120

I.U , , ' L ' ' ' { .... t ' ' ' ' _ 7 0.23

f 6 0.20

5 0.17

4 0.14

3 0.11

_o.o ) L X _l

-2.0 -1.5 -1.0 -0.5 0.0

v/b

(a)

1.0

0.5

7 02.3

6 0.20

5 0.17

4 0.14

3 0.11

2 0.08

1 0.05

(b)

-0.5

-1.0

-2.0 -1.5 -1.0 -0.5 0.0

v/b

Figure 5.38: Fluctuating lateral velocity, _,/Uup, for the primary tab geometry: a)1.2,

b)2.0.



0.5 >

121

0.23

0.20

0.17

0.14

0.11

0.08

0.05

(a)

-2.0 -1.5 -1.0

v/b
-0.5 0.0

7 0.23

6 0.20

5 0.17

4 0.14

3 0.11

2 0.08

1 0.05 (b)

-2.0 -1.5 -1.0 -0.5 0.0

v/b

Figure 5.39: Fluctuating transverse velocity, _,/Uup, for the modified tab geometry:

a) 1.2, b)2.0.



122

1.0

-1.0

y/b

Ca)

1.0

0.5

-0.5

-1.0

(b)

-2.0 -1.5 -1.0 -0.5 0.0 0.5

y/b

Figure 5.40: vw vector plot for the primary tab geometry at x/b=l.2: a) scaled, b)

unsealed, c) 7 = O, W = 0 intercepts d) singular points.



123

1.0

0.5

-0.5

-1.0

-2.0

t
t

-1.5 -1.0 -0.5 0.0

v/b

_/Uup (c)

1.0

s
o

0.5

-0.5

-2.0

-1.0

r

*q
i I

t N _ -- sphere
I

', • ...... hole

• s I

-1.5 -1.0 -0.5 0.0 0.5

v/b

(d)

Figure 5.40: (continued)



124

1.0

0.5
....... \\'_,

. ,',k\ ', ,

..... , ,, \\\\ ,, .
,, \ \\',,.\\ .. _

-0.5

-1.0

-2.0

--0.2U=p

-1.5 -1,0 -0.5 0.0 0.5

y/b

(a)

-1.0

(b)

Figure 5.41: vw vector plot for the primary tab geometry at x/b=2.0: a) scaled, b)

unscaled, c) V = 0, _ = 0 intercepts d) singular points.



125

1.0

0.5

-0.5

-1.0.

i
-2.0

s .°°

i i"-"- ---

- .5 -1.0 -0.5 0.0

v/b

..... _/U,,p
-- _/Uup (c)

-- sphere

...... hole
(d)

-1.0

-2.0 -1.5 -1.0 -0.5

v/b
0.0 0.5

Figure 5.41: (continued)



126

1.0

0.5

-0.5

-1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5

y/b

(a)

1.0

0.5

-0.5

-1.0

(b)

-2.0 -1.5 -1.0 -0.5 0.0 0.5

y/b

Figure 5.42: vw vector plot for the modified tab geometry at x/b=l.2: a) scaled, b)

unscaled, c) q = 0, _ = 0 intercepts d) singular points.



127

1.0

0.5

-0.5

-1.0 F

-2.0

i

I

I II , , I

-1.5 -0.5 0.0
, , !

-1.0

v/b

..... _/Uup
_/Uop (c)

-1.0

sphere.
...... hole

(d)

-2.0 -1.5 -1.0

v/b
-0.5 0.0 0.5

Figure 5.42: (continued)



128

1.0

0.5

-0.5

-1.0

-2.0

........................ --0.2U_,

...... •.. , , I / I _ , _., I i i ......

........ 'k t I t . .

........ t'ilp, ...........

....... r_f, .,,,,
... :.,, _'_\ _, 'A ° ' ' : " ', •
...... ,_\',_:/:X::,,',:: /

.... .. -.-.-._-..-,.. ...... \ ...... /

-- 222 ..............

......... "_"_-"-/////// 1 1 I I _

......... """/////// / I I 1 l

.... "''_"///,/11111,/1 I I I 1 I

- .5 -1.0 -0.5 0.0 0.5

y/l:)

(a)

1.0

0.5

-0.5

-1.0

-2.0

/I/1

1

-1.5 -1.0 -0.5 0.0 0.5

y/b

(b)

Figure 5.43: vw vector plot for the modified tab geometry at x/b=2.0: a) scaled, b)

unscaled, c) _ = O, _ = 0 intercepts d) singular points.



129

1.0

0.5

-0.5

-1.0

-2.0 -1.5 -1.0

v/b
-0.5 0.0

.....?/Uup

_/Uup (c)

-1.0

I

'-L_
#

#I

sphere
...... hole

(d)

-2.0 -1.5 -0.5 0.0 0.5

Figure 5.43: (continued)



130

1.0

0.5

"_0.0

-0.5

-1.0

i t i

-2.0

I I I

/-9

i
, I , , , T t i i i i _

-1.5 -1.0 -0.5 0.0

vto

8 9.0E-3

7 6.0E-3

6 30E-3

5 -3.0E-3

4 -6.0E-3

3 -9.0E-3

2 -1 2E-2

I -1.5E-2

Figure 5.44: g"-q"/Uup 2 for the primary tab geometry at x/b=l.2.

1.0

L

0.5

- oo

-0.5 ,))
)2

III
h

-1.0 1--

t I I t t '

-2.0

I I .... I

I _ , i , | t i r i I

-1.5 -1.0 -0.5

v/b

t
0.0

8 90E-3

7 6.0E-3

6 3.0E-3

5 -3.01E-3

4 -6.0E-3

3 -9.0E-3

2 -1.2E-2

I -1 5E-2

Figure 5.45: fi'_/Uup 2 for the primary tab geometry at x/b=2.0.



131

t 8 9.0E-3

7 6.0E-3

6 3.0E-3

5 -3.0E-3

4 -6.0E-3

3 -9.0E-3

2 -1.2E-2

1 .1.5E-2

2 for the modified tab geometry at x/b=l.2.Figure 5.46: _'-_'/Uuo

1.o 8 g.OE-3
7 6.0E-3

6 3.0E-3

S ,-3.0E-3

4 -6.0E-3

3 -9.0E-3

0.5 2 -1.2E-2

1 .1.5E-2

Figure 5.47: _"7/Uup 2 for the modified tab geometry at x/b=2.0.



132

1.0 ° 8 0.60

7 0.50

6 0.40

5 0.30

4 ..O.30

3 -0.40

2 -0.50

1 -0.60

-1.0

-2.0 -1.5 -1.0 -0.5 0.0
vto

Figure 5.48: E'-_/E'_ for the primary tab geometry at x/b=1.2.

8 0.60

7 0.5O

6 0.40

5 0.30

4 -0.60

3 -0.40

2 -0.50

1 -0.60

-0.5

-1.0

-2.0 -1.5 -1.0 -0.5 0.0
v/b

Figure 5.49: h-W"/_ for the primary tab geometry at x/b=2.0.



133

%

\

8 0.60

7 0.50

6 0.40

5 0.30

4 -0.30

3 -0.40

2 -0.50

1 -0.6O

-2.0

Figure 5.50:

-1.5 -1.0 -0.5 0.0

v/b

fi"-q"/6_ for the modified tab geometry at x/b=l.2.

B 0.60

7 0.50

6 0.40

5 0.30

4 -0.30

3 -0.40

2 -0.50

1 -0.6O

..Q
 o.o

-2.0 -1.5 -1.0 -0.5 0.0
v/b

Figure 5.51: h-_/_¢ for the modified tab geometry at x/b=2.0.



134

1.0 I I I

0.5

-0.5

-1.0

Iltl I,,

-2.0 -1.5

Figure 5.52: h-"ff-_/Uup

I

-1.0

v/b

ILI,L

-0.5 0.0

6 1.8E-2

5 1.5E-2

4 1.2E-2

3 9.0E-3

2 6.0E-3

1 3.0E-3

2 for the primary tab geometry at x/b= 1.2.

1.0

0.5

-0.5

-1.0

I I t

-2.0 -"

I I I

I , , i , I , = , , I i i i L

.5 -1.0 -0.5 0.0

v/b

6 1.8E-2

5 1.5E-2

4 1.2E-2

3 9.0E-3

2 6,0E-3

1 3.0E-3

Figure 5.53: W"_/Uup 2 for the primary tab geometry at x/b=2.0.



135

6 1.8E-2

5 1.5E-2

4 1.2E-2

3 9.0E-3

2 6.0E-3

1 3.0E-3

-2.0 -1.5

Figure 5.54: _-'-_/Uup

-1.0 -0.5 0.0

v/b

2 for the modified tab geometry at x/b=1.2.

6 1.8E-2

5 1.5E-2

4 1.2E-2

3 9.0E-3

2 6.0E-3

1 3.0E-3

\

-2.0 -1.5 -1.0 -0.5 0.0
v/b

Figure 5.55: _"'_'/Uup 2 for the modified tab geometry at x/b=2.0.



136

-2.0
I

. ,5

?
I I I I I

-1.0

v/b

I I i I ' ' ' i

-0.5 0.0

0.60

0.50

0.40

0.30

-0.30

-0.40

-0.50

-0.60

Figure 5.56: _/_ for the primary tab geometry at x/b=l.2.

8 0.60

7 0.50

6 0.40

5 0.30

4 -0.30

3 -0.40

2 -0.50

1 .0.60

-1.0

-2.0 -1.5 -1.0 -0.5 0.0
v/b

Figure 5.57: 5-'-_/_'_ for the primary tab geometry at x/b=2.0.



137

1.0

0.5

8 0,60

7 0.50

6 0.40

5 0.30

4 -0.30

3 -0.40

2 -0.50

1 -0.60

-0.5

-1.0

-2.0 -1.5 -1.0 -0.5 0.0
v/b

Figure 5.58: 5"-_/_' for the modified tab geometry at x/b=1.2.

1.0 8 0,6O

7 0.50

6 0.40

5 0.30

4 ,-0.30

3 -0.40

2 -0.50

1 -0.6O

-1.0

-2.0 -1.5 -1.0 -0.5 0.0
v/b

Figure 5.59: _-ff"/_ for the modified tab geometry at x/b=2.0.



138

0.3

0.2

0.1

-0.1

-0.2

-0.3

I I I I

..... negative

A

1" _ %

%

(a)
"11

-0.4 ' I } l I I I i I I I I _ I I I I i I I I I

-_.o -o.8 _.-o.6 -o.4
y/o

-0.2

0.3

0.2

0.1

-0.1

-0.2

-0.3

I .... I ' I ' I

..... negative
positive

" " (b)

-0.4 i I I I I I I I I I I I t I I i T I I I I I

-1.o -o.8 __-o.6 -o.4 -o.2
ym

Figure 5.60: Cross-vane results for the primary tab geometry at x/b=: a)O. 1, b)0.2,

c)0.3, d)0.4.



139

0.3

0.2

0.1

-012

-0.3

I ' I I I

..... negative

positive

\

(c)
'x

%

\

x I

-0.4 ' ' I , , i , I , , , i I i i i , I i i , n

-1.0 -o.s y/b-0.6 -0.4

0.3

0.2

0.1

_.._0.0

-0.1

-0.2

-0.3

-0.4

I I I ] = , i ,

..... negative
positive

-, (d)
. "mk

k _

-1.0 -0.8 y/b-0.6 -0.4

Figure 5.60: (continued)

-0.2

-0.2



140

..... negative
_- positive

(a)

-0.2

-1.0

..... negative
positive

"_ 0.0

-0.1

-0.2

(b)

Figure 5.61:

-1.0 -0.8 -0.6 -0.4 -0.2

y/b
Cross-vane results for the modified tab geometry at x/b- a)O. 1, b)0.2,

c)0.3, d)0_4.



141

_0.0

-0.3

0.3

0.2

0.1

-0.1

-0.2

-0.3

..... negative
positive

(c)

-1.0 -0.8 -0.6 -0.4 -0.2
y/b

\

\

..... negative
positive

(d)

-0.4
-1.0 -0.8 -0.6

y/b
Figure 5.61" (continued)

-0.4 -0.2



0.5

-0.5

142

-1.5 -1.0 -0.5 0.0

y/b

A 1.50

9 1.25

8 1.00

7 0.75

6 0.5O

5 -0.50

4 -0.75

3 -1.00

2 -1.25

1 -1.50

Ca)

-' .5 -1.0 -0.5 0.0

A 1.50

9 1.25

8 1,00

7 0.75

6 0.50

5 -0.50

4 -0.75

3 -1.00

2 -1.25

1 -1.5O

y/b

(b)

Figure 5.62: ¢O*xfor the primary tab geometry: a) x/b=l.2, b) x/b=2.0.



143

A 1.50

9 1.25

8 1.00

7 0.75

6 0.50

5 -0.50

4 -0.75

3 -1.00

2 -1.25

1 -1.50

(a)

0.5

"_ 0.0

-0.5

-1.5 -1.0 -0.5 0.0

y/b

-" .5 -1.0 -0.5 0.0

y/b

A 1.50

9 1.25

8 1,00

7 0.75

6 0.50

5 -0.50

4 -0.75

3 -1.00

2 -1.25

1 -1°50

(b)

Figure 5.63: ¢O*xfor the modified tab geometry: a) x/b=l.2, b) x/b=2.0.



144

-2.0 -1.5 -1.0 -0.5 0.0

v/b

m_

Figure 5.64: Overlay of vw vectors and COx contours for the modified tab geometry at

x/b=l.2.

/

• i

_" jlj

jill ¢/'//i ._

t[ I

Figure 5.65: Inferred upstream vorticity connections.



6. SUMMARY AND CONCLUSIONS

6.1 Analysis of the Changes for the Flow Field of the Modified Tab Geometry

The expansion of a jet into the surrounding or ambient region can be greatly

increased by using secondary tabs in addition to primary tabs which have previously

been investigated. The addition of secondary tabs is herein designated as the modified tab

geometry. The secondary tabs provide attachment surfaces for the naturally occurring

expansion of the core flow into the ambient region. The resulting change in the trajectory

of the jet flow causes a tighter curvature in the streamlines at the exit which changes the

static pressure field near the exit.

The resulting changes in the static pressure field serves two purposes. First, the flux

of COxinto the flow upstream of the tab increases which enhanced the negative sense

streamwise vorticity downstream of the exit. Second, the changes in the pressure field

results in a favorable pressure gradient in some regions near the exit of the jet which

significantly increases the positive O_xdownstream of the exit. The large scale distortion

in the flow field is increased through the combined "pumping action" of the two regions

of streamwise vorticity for the modified tab geometry.

In the case of the primary tab geometry the region of negative sense streamwise

vorticity dominates the flow and creates the distortion demonstrated in the present study

as well as in the past studies (Bradbury and Kahdeme (1975), Ahuja and Brown (1989),

and Zaman et. al. (1994)).
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6.2 Conclusions

The following conclusions were supported through the use of several experimental

techniques:

• Although the shear layer in the plume region of the primary tab geometry was

severely distorted in shape compared to the untabbed geometry, it had similar

characteristics. Specifically, the growth rate of the momentum thickness, d0/dx,

was the same and the Reynolds shear stresses were similar for both geometries.

• The shear layer in the plume region for the modified tab geometry showed

increased distortion in shape as well as a significant increase in both the growth

rate of the momentum thickness and the Reynolds shear stresses compared to

the primary tab geometry and the untabbed geometry.

• The flow field of the primary tab geometry and the modified tab geometry were

nominally the same below the projected top wall of the tunnel. This indicated

that the effect of the secondary tabs was primarily felt in the upper portion of

the flow field.

• A favorable pressure gradient was created along side the primary tab and near

the jet exit by the addition of the secondary tabs. This change in the pressure

field increased the magnitude of the streamwise vorticity associated with the

re-orientation of the boundary layer vorticity downstream of the exit for the

modified tab geometry when compared to the primary tab geometry.

• The magnitude of the streamwise vorticity due to the upstream pressure hill was

slightly increased downstream of the exit plane for the modified tab geometry

when compared to the primary tab geometry for y<0.

• The two counter rotating regions of streamwise vorticity acted like a "pump" to

eject fluid from the core region in the near field. The modified tab geometry

showed a greater expansion of the core flow into the ambient region due to the

increase in both regions of streamwise vorticity.
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APPENDIX A: Determination of 13

The angle 13was defined by a line drawn perpendicular to the sensor and the probe

axis. This angle was nominally +45 degrees for the sensors of as x-array, and zero for a

single sensor probe. Note that while the angle 13, was a physical property of the probe

defined by the assembly of the sensors it was determined by the calibration data. The

following analysis therefore determined the effective 13,not the physical 13for use in the

processing algorithm. Equation (3.3) was rewritten with the dependence on 3' removed

from the A,B and n values by

E2(Q,3')=A+BQncos(13-3') n. (A 1)

Equation (A1) was then differentiated with respect to 3' to produce

d E 2
- 0+BQ n ncos( 15- 3') n-1 sin( _! - 3'). (A2)

d3'

Solving equation (A2) for the quantity BQ" yielded

BQn=(E2-A)/cos(_I-3') n. (A3)

Equation (A3) was substituted into equation (A2) and solved to give

d E 2 _ ( E 2 - A ) nncoS ( 13_ 3') n-I sin( 15- T) (A4)
d 3' cos( t5- 3')

which simplified to

tan( [3 ) = d E 2 ( 3'=0 )/( E 2 ( 3'=0)- A ( 3'= 0 ) )n. (A5)
d3'

The calibration data were used to form a second order fit of E 2 versus 3', see Figure A. 1.
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The curve was differentiated once and evaluated at T=0. The angle 13was then determined

using equation (A4).
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